

A Beginner's Guide to
Developing Documentum®

Desktop Applications

Techniques and Solutions Using Visual Basic®
and the DFC

M. Scott Roth

A Beginner's Guide to
Developing Documentum®

Desktop Applications

A Beginner's Guide to
Developing Documentum®

Desktop Applications

Techniques and Solutions Using Visual Basic®

and the DFC

M. Scott Roth

Disclaimer
The author has made every effort to ensure that the information in this book is complete, and
accurate. This information is provided "as is". The author makes no warranty concerning the
information, and shall have no liability with respect to loss or damages arising from its use.

Trademarks
All terms and product names mentioned in this book that are known to be trademarks, registered
trademarks, or service marks have been properly spelled, capitalized, and notated. The use of a

term or name in this book should not be regarded as affecting the validity of any trademark,
registered trademark, or service mark.

Documentum, Documentum Desktop, Documentum Application Builder, Documentum Server,

Workspace, Docbase and Content Server are either trademarks or registered trademarks of
Documentum, a division of EMC Corporation, in the United States and other countries.

Windows, Visual Basic, Visual Studio and IntelliSense are either trademarks or registered

trademarks of Microsoft Corp. in the United States and other countries.

Java is a registered trademark of Sun Microsystems, Inc. in the United States and other countries.

Verity, TOPIC and KeyView are registered trademarks of Verity, Inc. in the United States and
other countries.

Oracle is a registered trademark of Oracle, Corp. in the United States and other countries.

Copyright © 2005 M. Scott Roth
All Rights Reserved

Dedication

I thankfully dedicate this book, as with all of my labors,
to the glory of God.

I also dedicate this book to my loving wife, Rachael,

who has tolerated me sitting at this keyboard
every night. I love you.

And to my daughter, Kristin,

who is my treasure.

Micah 6:8
Joshua 24:15

i

TABLE OF CONTENTS

PREFACE.. VII
ABOUT THE AUTHOR..VIII
CONTACT INFORMATION...VIII
REFERENCES ...VIII

1. INTRODUCTION... 1
1.1 WHO SHOULD READ THIS BOOK?.. 2
1.2 ORGANIZATION OF THIS BOOK.. 3
1.3 SOURCE CODE.. 4
1.4 CONVENTIONS USED IN THIS BOOK... 5

1.4.1 Typographic .. 5
1.4.2 Variables And Source Code .. 6
1.4.3 Class And Interface Nomenclature ... 6

1.5 A BRIEF INTRODUCTION TO THE DOCUMENTUM FOUNDATION CLASSES 7
1.5.1 Docbase Classes ... 9
1.5.2 Service Classes.. 10
1.5.3 Documentum Desktop Classes.. 12

1.6 OVERVIEW OF A DOCUMENTUM DESKTOP APPLICATION...................... 12
1.7 INTERFACE INHERITANCE AND TYPE CASTING IN VISUAL BASIC.......... 15

2 GETTING STARTED WITH APPLICATIONS AND
 COMPONENTS.. 19

2.1 BUILDING A STANDALONE APPLICATION .. 20
2.1.1 Setting Up A Standalone Application Project............................... 21
2.1.2 Application Skeleton Code.. 24
2.1.3 Debugging And Testing The Application...................................... 27
2.1.4 Packaging And Deploying the Application................................... 27

2.2 BUILDING A COMPONENT.. 28
2.2.1 A Word About COM And Documentum Components 29
2.2.2 Setting Up A Component Project.. 30
2.2.3 Component Skeleton Code .. 36
2.2.4 Debugging And Testing The Component 41
2.2.5 Packaging A Component... 48
2.2.6 Adding A Component To A DocApp ... 50

2.3 MODIFYING THE DOCUMENTUM DESKTOP MENU 54

ii

2.3.1 A Word About Menus .. 55
2.3.2 Adding A Global Component To The Menu.................................. 55
2.3.3 Adding A Type-Specific Component To The Menu 58
2.3.4 Adding An Executable Application To The Menu......................... 59

2.4 MODIFYING DOCUMENTUM DESKTOP COMPONENTS............................. 60
2.5 TROUBLESHOOTING COMPONENT DELIVERY ... 62
2.6 CHAPTER SUMMARY.. 63

3 WORKING WITH QUERIES AND COLLECTIONS 65
3.1 HOW TO QUERY THE DOCBASE... 66

3.1.1 Using Run Query... 66
3.1.2 Using The Query Manager ... 68
3.1.3 Using The IDfQuery Class.. 74

3.2 TYPES OF QUERIES .. 76
3.2.1 SQL Pass-Through Queries .. 76
3.2.2 Cached Queries... 78
3.2.3 Full-Text Queries .. 82

3.3 HOW TO PROCESS COLLECTIONS... 95
3.3.1 Basic Collection Processing ... 95
3.3.2 Tracing For Open Collections .. 98
3.3.3 Calculating The Size Of Collections ... 99
3.3.4 Recursive Processing Of Collections.. 101
3.3.5 Processing Collections With Unknown Content 104

3.4 USEFUL QUERIES ... 106
3.4.1 Full-Text Queries .. 107
3.4.2 Full-Text Index Queries .. 109
3.4.3 Registered Table Queries.. 111
3.4.4 Virtual Document Queries .. 114
3.4.5 Workflow Queries ... 115
3.4.6 Inbox Queries.. 119
3.4.7 Object Queries .. 120
3.4.8 Content, Cabinet, and Folder Queries.. 121
3.4.9 Setting Up Indexes .. 124

3.5 CHAPTER SUMMARY.. 124

4 IMPLEMENTING CORE DOCUMENT MANAGEMENT
 FUNCTIONS... 126

4.1 IMPLEMENTING LIBRARY FUNCTIONS WITH THE DFC 127
4.1.1 Creating Objects ... 127
4.1.2 Deleting Objects.. 131
4.1.3 Copying Objects.. 136

iii

4.1.4 Checking Out And Editing Objects ... 140
4.1.5 Viewing Objects .. 142
4.1.6 Canceling A Checkout... 142
4.1.7 Checking In Objects.. 143

4.2 IMPLEMENTING LIBRARY FUNCTIONS WITH DFC OPERATION
 CLASSES .. 145

4.2.1 Overview Of Using Operations... 148
4.2.2 Creating And Viewing Objects.. 149
4.2.3 Deleting Objects.. 149
4.2.4 Copying Objects.. 150
4.2.5 Checking Out And Editing Objects ... 151
4.2.6 Canceling Checkout Of Objects.. 153
4.2.7 Checking In Objects.. 154
4.2.8 Implementing An Operation Monitor.. 155
4.2.9 Processing An Operation Abort.. 157

4.3 CHAPTER SUMMARY.. 159

5 PROVEN SOLUTIONS FOR COMMON TASKS 161
5.1 LOGIN USING THE DFC ... 162
5.2 LOGIN USING THE LOGIN MANAGER ... 163
5.3 PASSING A SESSION TO A FORM.. 168
5.4 SESSION LOCKING.. 169
5.5 A NON-BLOCKING VISUAL BASIC SLEEP() FUNCTION........................ 173
5.6 RUNNING DOCUMENTUM COMPONENTS .. 174
5.7 ERROR TRAPPING... 177
5.8 TRACING .. 180

5.8.1 Client-Side Tracing... 180
5.8.2 Server-Side Tracing .. 190
5.8.3 Custom Tracing... 193

5.9 AUDITING .. 196
5.10 USING THE PROGRESS SENTINEL ... 199
5.11 USING THE REGISTRY .. 201

5.11.1 Accessing The Registry ... 202
5.11.2 Accessing Checked Out Files.. 203
5.11.3 Enumerating Subkeys.. 204

5.12 CREATING A DOCUMENTUM RESOURCE LOCATOR.............................. 209
5.13 SENDING E-MAIL FROM A DOCUMENTUM DESKTOP APPLICATION..... 212
5.14 FINDING THE FOLDER PATH FROM AN OBJECT ID............................... 214
5.15 CREATING DOCBASE PATHS .. 216
5.16 WORKING WITH THE INBOX .. 221

iv

5.17 DUMPING AND LOADING THE DOCBASE.. 223
5.17.1 Dump... 224
5.17.2 Load .. 231

5.18 IMPLEMENTING A SIMPLE SEARCH FORM .. 236
5.18.1 The Form... 236
5.18.2 The Code ... 238
5.18.3 The Results .. 244

5.19 CHAPTER SUMMARY.. 245

6 WORKING WITH SCREEN CONTROLS... 246
6.1 DOCUMENTUM VALIDATION CONTROLS.. 247

6.1.1 Referencing Validation Controls In Your Visual Basic Project . 248
6.1.2 Example Of Documentum Validation Controls 249

6.2 DOCBASE-AWARE CONTROLS.. 255
6.2.1 Referencing Docbase-Aware Controls In Your Visual Basic
 Project.. 257
6.2.2 Example Of Docbase-Aware Controls.. 257
6.2.3 The Documentum Open Dialog .. 262

6.3 VISUAL BASIC CONTROLS.. 268
6.3.1 Referencing Microsoft Controls In Your Project........................ 268
6.3.2 Example Of Emulating Validation And Docbase-Aware
 Controls... 269

6.4 THE OBJECT SELECTOR FORM ... 285
6.4.1 The Form... 285
6.4.2 The Code ... 288
6.4.3 Using The Form .. 300

6.5 CHAPTER SUMMARY.. 301

7 TIPS, TOOLS AND HANDY INFORMATION.................................... 303
7.1 THE DOCUMENTUM API .. 303

7.1.1 dmAPIExec() ... 304
7.1.2 dmAPIGet() ... 305
7.1.3 dmAPISet().. 305

7.2 THE DOCUMENTUM API FROM THE DFC... 306
7.2.1 apiExec() ... 306
7.2.2 apiGet() ... 307
7.2.3 apiSet().. 307

7.3 THE INTERACTIVE MESSAGE TESTER... 308
7.4 THE IAPI32 AND IDQL32 COMMAND LINE UTILITIES......................... 309
7.5 SAMSON... 310
7.6 RESETTING THE DOCUMENTUM DESKTOP ... 310

v

7.7 CLEARING THE CLIENT-SIDE CACHES ... 310
7.8 ANATOMY OF THE DMCL.INI FILE .. 311

7.8.1 Backup DocBroker.. 311
7.8.2 Client-Side Cache Size.. 312
7.8.3 Local Path... 312
7.8.4 Batch Hint Size.. 312
7.8.5 Compression ... 313
7.8.6 Cached Queries... 313
7.8.7 Tracing.. 313

7.9 ANATOMY OF THE R_OBJECT_ID ... 313
7.10 OBJECT TYPE IDENTIFIERS... 314
7.11 ATTRIBUTE DATA TYPES ... 319
7.12 COMPUTED ATTRIBUTES.. 320
7.13 FORMAT TYPES.. 322
7.14 OBJECT PERMISSIONS .. 336
7.15 REGISTERED TABLE PERMISSIONS ... 338
7.16 VERITY KEYVIEW FILE FILTERS.. 339
7.17 MENU COMMAND STATE FLAGS.. 340
7.18 UNINSTALLING DOCAPPS .. 344
7.19 SERVER ERROR FILES .. 345
7.20 ANATOMY OF THE SERVER.INI FILE... 350

7.20.1 Enforce a Four Digit Year .. 350
7.20.2 Client Session Timeout Period.. 350
7.20.3 Concurrent Sessions.. 351
7.20.4 Login Ticket Timeout Period .. 351
7.20.5 Mail Notification... 351
7.20.6 User Authentication Case ... 351
7.20.7 Workflow Agent Sleep Interval ... 352

7.21 CHAPTER SUMMARY.. 352

8 PUTTING IT ALL TOGETHER IN A SAMPLE APPLICATION.... 353
8.1 DMSPY ... 354

8.1.1 The Form... 356
8.1.2 The Code ... 359
8.1.3 Using dmSpy ... 385

8.2 CHAPTER SUMMARY.. 385

AFTERWORD .. 387

INDEX.. 389

vi

vii

Preface
When I began writing this book it wasn’t supposed to be a book, it was a project
to organize a manila folder into some sort of usable and manageable collection.
The folder contained Documentum® tech support notes, chapters from books,
source code listings, Internet posts, tips, tricks, and best practices I had collected
or developed over the years. Two things happened that changed the purpose and
audience for this project. First, I started a job with a staff of experienced
programmers that had never programmed in Documentum. My peers didn’t need
insight about general programming; they needed insight about programming in
Documentum. I planned to give them guidance and jump-start their Documentum
programming experience by documenting my own experiences. The organization
of this material was a first step.

The second thing that happened was the Internet buzz regarding the lack of third-
party Documentum training, books, tutorials, and documentation reached another
all-time high. People were clamoring for the kind of information I had in my
folder and in my head! With these two things in mind, I decided to broaden the
audience for this project, and write this book for you, the beginning Documentum
programmer.

This book focuses on the basic building blocks of Documentum development and
is largely a product of my personal experiences. This book strives to be both a
hands-on guide to developing applications and solutions for Documentum, as well
as a guide to best practices. It demonstrates how to start a Documentum project,
issue and process queries, and use screen controls. Along the way, it touches on
some other common building blocks and best practices. For instance, it
demonstrates how to implement basic document management functionality (e.g.,
checkin, checkout) using custom code as well as Documentum operation classes.
It recommends best practices for session management, and tips for tracing and
debugging applications and components. It also provides quick access to some of
the most frequently referenced Documentum definitions and constants (e.g.,
object permission values).

viii

About The Author
Scott Roth is a Senior Software Engineer and a Microsoft Certified Solution
Developer (MCSD) with Science Applications International Corporation (SAIC).
He has been developing Documentum solutions for the Federal Government and
commercial industry since 1998. Mr. Roth's experience includes Documentum
3.2, EDMS 98, Documentum 4i, Documentum 5, RightSite, the WDK, peripheral
products, and numerous customization jobs. He has also spoken twice at
Momentum, Documentum's user conference, on the topic of managing digital
assets with Documentum.

Mr. Roth is a frequent contributor to the www.dmdeveloper.com website, as
well as the groups.yahoo.com Documentum discussion forums. In 1999, he
developed Db-Documentum, a Perl module that interfaces with the Documentum
API. This module allows Documentum applications to be written in Perl. Db-
Documentum is available free from the Comprehensive Perl Archive Network
(CPAN): http://www.cpan.org/modules/by-authors/id/M/MS/
MSROTH/.

Contact Information
I have created a website for this book at: http://www.dm-book.com. The
website contains many useful bits of information including: all the source code in
the book, corrections, a sample chapter, reviews, utilities and other articles,
contact information, and an opportunity to order more books.

The easiest way to contact me is through the website. However, if you prefer to
email me directly, my email address is: Scott@dm-book.com.

Please contact me and let me know what you think of this book. Ask me a
question, provide a correction, give me a tip, a trick, a best practice; or tell me I'm
out of my mind! I look forward to hearing from you.

References
The information, the code, and the best practices contained in this book came
from my personal experience with Documentum. However, to refresh my
memory and verify certain aspects of the Documentum, I frequently access the

ix

publications and references list below. I encourage you to take advantage of them
also.

Documentum Publications

• Developing DFC Applications
• Developing Documentum Applications
• Documentum 5 Architecture: A Technical Overview
• Documentum Application Performance and Tuning
• Documentum Content Server Administrator’s Guide
• Documentum Content Server API Reference Manual
• Documentum Content Server DQL Reference Manual
• Documentum Content Server Fundamentals
• Documentum Content Server Object Reference Manual
• Documentum Desktop Development Kit Development Guide
• Documentum Foundation Classes API Specification
• Documentum Foundation Classes Development Guide
• Using DFC in Documentum Applications

Documentum Resources

• Documentum technical support notes
(The Documentum tech support site is a great place to find information
from Documentum engineers not necessarily included in any of their
publications.)

• Documentum training classes
• Documentum online "webinars"
• Momentum training sessions
• Documentum professional services consultants

Internet Resources

• dm_developer (dm_developer is the Internet's premier Documentum
discussion site and source for free advice, articles, and tools.)
http://www.dmdeveloper.com

• Documentum developer website
http://developer.documentum.com

• Documentum discussion groups at Yahoo!
http://groups.yahoo.com

• Microsoft Developers Network website
http://msdn.microsoft.com

x

Chapter 1 – Introduction

1

1
1. Introduction
One problem with developing custom Documentum applications is knowing
where to begin. My purpose for writing this book was to de-mystify this process.
I say "de-mystify" because to a beginner–even one that has taken the introductory
Documentum training courses–producing a custom Documentum application is a
bit of a mystery. How do you approach the problem? Are there templates? Do I
write a standalone application, or a component? What’s a component anyway?
What and where are the Documentum Foundation Classes (DFC)? Do I have to
learn the API? Where is the Documentum Desktop®, all I see is Microsoft
Explorer? How do I login to the server and establish a session? Once logged in,
how do I establish a client? What’s this query and collection stuff? How do I
bind Docbase™ data to a screen control? To the uninitiated, building a custom
Documentum component or application can be a mind-boggling experience.
There is no course, book, or other material that continues where the introductory
courses end, to guide a developer into his first application. That’s where this
book comes in.

Chapter 1 – Introduction

2

This book strives to bridge numerous sources and consolidate the best that they
have to offer into a concise reference. It contains everything a beginning
Documentum developer needs to know to get started building components and
applications. It draws from Documentum training, Documentum reference books,
personal experience, and Internet discussions to provide the best material
available. It provides approaches to particular problems. It provides templates
and skeleton code. It begins with developing the framework for both an
application and a component. It continues by walking the reader through some
basic concepts: queries, collections, operations, screen controls, etc. It covers
many common techniques like establishing a session, debugging, and using
library functions. In addition, this book addresses many of the questions I hear
most frequently asked on the Internet and among my colleagues. This book
provides beginning Documentum developers not only the basics they need to be
productive quickly, but also solutions, techniques, and best practices for common
tasks and problems.

The Documentum developer community has formed a support network–both
physical and virtual–for the free exchange of ideas and solutions. There are many
Documentum Users' Groups (see http://www.documentum.com/
user_groups for a list of groups near you), and a host of websites and
newsgroups (you can find a list of these in the Preface) devoted to Documentum
development. You will discover that most developers are willing to help you, and
you can benefit greatly from their experience.

So, where do you go from here? If you want to learn about the component and
application frameworks, go to Chapter 2. If you want to learn about queries,
collections, core functionality, or screen controls, go to their respective chapters
(3, 4, and 6). If you want to learn a few techniques for solving common
problems, go to Chapter 5. Chapter 7 is full of miscellaneous information. If all
you are interested in is the sample application, you’ll find it in Chapter 8. The
remainder of this chapter provides an overview of the DFC, Documentum
applications in general, and Microsoft Visual Basic® and interface inheritance.

1.1 Who Should Read This Book?
This book was written for experienced software developers who are new to
Documentum development. I assume a degree of proficiency with Visual Basic

Chapter 1 – Introduction

3

and the Microsoft Visual Studio® IDE, a familiarity with Documentum and the
DFC, and knowledge of basic object-oriented programming concepts. You won’t
find any wizard-like techniques in the code examples or that I have exploited
some little-known nuance of Visual Basic or the DFC to implement a solution.
The examples are all simple, straightforward, and clearly illustrate the technique
or best practice under discussion.

Readers should know how to install and use the Documentum Desktop® and
Documentum Application Builder®, and be familiar with the Documentum's
architecture, philosophy, and operation. You will find the subjects discussed in
this book are not esoteric or overly technical in nature, but rather, are exceedingly
practical.

1.2 Organization Of This Book
This book is organized into eight chapters that can be read sequentially or
randomly:

• Chapter 1, Introduction, provides overviews of Documentum applications
and Documentum application development, the DFC, and some object-
oriented programming concepts unique to Visual Basic and the DFC.

• Chapter 2, Getting Started with Applications and Components, covers

setting up the Visual Basic environment to create both applications and
components, setting up and using test harnesses to test components, and
use of the Documentum Desktop menu system.

• Chapter 3, Working with Queries and Collections, covers several

techniques for querying the Docbase and processing the results
(collections). It examines and demonstrates three types of queries: SQL
pass-through, cached, and full-text. This chapter also contains a collection
of useful queries.

• Chapter 4, Implementing Core Document Management Functions,

demonstrates how to write seven custom document management functions

Chapter 1 – Introduction

4

(library services). It then demonstrates how to implement these same
functions using the Documentum Operation classes.

• Chapter 5, Proven Solutions for Common Tasks, provides a collection of

proven solutions for tasks commonly encountered by Documentum
programmers. These tasks include: logging in, error trapping, tracing,
auditing, using the registry, Dump and Load, and creating custom search
forms, and others.

• Chapter 6, Working with Screen Controls, examines three classes of screen

controls: Documentum validation controls, Docbase-aware controls, and
Microsoft ActiveX® controls. This chapter concludes with the creation of
the Object Selector form, a self-contained form for navigating the Docbase
and selecting objects.

• Chapter 7, Tips, Tools and Handy Information, contains an eclectic

assortment of information, most of which does not involve programming.

• Chapter 8, Putting It All Together in a Sample Application, walks you
through constructing the dmSpy application. dmSpy is a
programmer/administrator utility for examining objects in the Docbase.
The application uses the techniques and information covered in the
previous chapters to implement its functionality.

1.3 Source Code
The working examples of source code in this book are denoted with a Source
Code label. These examples can be found in the dm_book_src_1-0.zip file
available for download from: http://www.dm-book.com. Each example
has been developed as a standalone application and can be run independently of
any other example in the book. Therefore, each example contains a login
subroutine, and where needed, a subroutine to select a random object from the
Docbase to operate on. Any code that could cause damage or loss of data to your
Docbase has been disabled in these examples.

Chapter 1 – Introduction

5

All of the examples used in this book were developed using Microsoft Visual
Studio 6 and Documentum Desktop 5.1. To use them, you will need a machine
configured similarly.

1.4 Conventions Used In This Book
I use three categories of conventions in this book: typographic, variables and
source code, and class nomenclature. Each of these is discussed in the following
sections.

1.4.1 Typographic

Table 1.1 contains examples and explanations of the typographic constructs and
conventions used in this book.

Table 1.1 - Typographic Conventions

Typographic Construct Purpose
Courier font with gray
background

Denotes blocks of source code.

Courier font Within the context of paragraphs,
denotes source code elements,
object properties and attributes, and
commands.

As a standalone paragraph, it
denotes sample statements and
inputs.

Courier font with Italics
and ()

Within the context of paragraphs,
denotes method names, subroutine
names, and function names.

Arial font Within the context of paragraphs,
denotes forms, menus, and screen
elements.

Chapter 1 – Introduction

6

Typographic Construct Purpose

Boxed text

Denotes output or file contents.

1.4.2 Variables And Source Code

The examples in this book assume the following variables are global and defined
outside the scope of each code snippet:

Dim cx As DfClientX
Dim client As IDfClient
Dim session As IDfSession

Set cx = New DfClientX
Set client = cx.getlocalClient
Set session = client.newSession()

In addition, the examples frequently contain hard-coded object Ids. I hard-coded
them to simplify the examples and make the source code more concise.

In order to keep the code examples a reasonable length, and to keep them focused,
most of them omit error trapping and session locking code. However, the full-
length examples in this book (e.g., the Object Selector form and dmSpy) do
contain these elements.

1.4.3 Class And Interface Nomenclature

There are three primary types of classes discussed in this book: DFC classes,
DFC interfaces, and Desktop classes. DFC classes are identified by a Df prefix,
as in DfClientX. DFC interfaces are identified by an IDf prefix, as in IDfClient.
Finally, Desktop classes (i.e., classes only available in the Desktop libraries, and
not the DFC proper) are identified by a Dc prefix, as in DcReport. This is an
important distinction to make, because any class beginning with Dc will not be
available in all programming environments (e.g., Java®).

Once any of these classes are instantiated, I refer to them as objects, regardless of
whether they were DFC or Desktop class. In addition, I also refer to interfaces as

Chapter 1 – Introduction

7

classes. I realize this blurs the object-oriented distinction that the terms class and
interface were designed to imply. Yet, both Visual Basic and Documentum tend
to blur this distinction themselves, especially when it comes to inheriting
interfaces (more on that later). For simplicity, any type of template, class or
interface, is referred to as a class, and any instantiation of them is referred to as an
object.

1.5 A Brief Introduction To The
Documentum Foundation Classes

The Documentum Foundation Classes (DFC) comprise Documentum’s
hierarchical class library, which provides access to the functions and capabilities
of the Documentum client and server. The DFC is an object-oriented library that
sits on top of the Documentum Client Library (DMCL), the server’s command-
oriented API library. The DFC is actually written in Java, but a Component
Object Model (COM) wrapper around the library makes it accessible from Visual
Basic. However, there are some quirks with this arrangement as discussed later in
this chapter.

Figure 1.1 depicts the conceptual architecture of a Documentum application and
the Documentum libraries. The application layer denotes any Documentum client
that uses the DFC–custom application, Documentum application, or component.
The DFC High-level Classes layer contains high-level DFC classes; such as the
Documentum Operation classes. This layer can also include custom developed
classes. Classes in this layer contain a high-degree of specialized functionality.
The DFC Mid-level Classes layer contains mid-level DFC classes; such as the
Workflow and Virtual Document classes. Classes in this layer tend to provide
services and contain more generalized functionality than the High-level classes.
The DFC Core Classes layer contains the lower-level, core DFC classes, such as
DfSysObject. Classes in this layer are the building blocks of all the others. These
classes provide basic data access and control. Finally, the DMCL layer contains
the command-oriented functions that actually implement the methods of the DFC.

Applications can use classes from any layer in the architecture and frequently mix
them. The purpose of Figure 1.1 is simply to illustrate how the classes of the
DFC can exhibit a hierarchy in their complexity and interaction. However, the

Chapter 1 – Introduction

8

classes in the DFC are not usually referred to as high-level, mid-level, and core.
As you will see later in this section, a more natural way to categorize DFC classes
is Docbase (classes that represent objects in the Docbase), Services (classes that
implement services), and Desktop (classes that are unique to the Documentum
Desktop).

Figure 1.1 – Documentum Application Architecture

Remember, everything in Documentum is considered an object. That’s not to say
that all of your code will be truly object-oriented. All Documentum objects (i.e.,
things in the Docbase) have properties, methods and a type. Properties are known
attributes or characteristics about an object. Methods are functions or subroutines
that the object can perform. Each object has a type identifying the template which
created it, and where it fits in the hierarchy of objects. All objects of a given type
share common, core properties and methods. Not all Docbase objects are
represented in the DFC. In these cases, the objects are referenced using their
supertypes.

Chapter 1 – Introduction

9

1.5.1 Docbase Classes

A large part of the DFC mirrors the object types and structure found in the
Documentum Server®. For example, the IDfSysObject class mirrors its server
counterpart, dm_sysobject. Figure 1.2 depicts a subset of this structure.

Figure 1.2 - Example of Relationship Between DFC Objects and Docbase Objects

All objects that live in the Docbase inherit from the dm_persistentobject
type. However, you cannot instantiate or query a dm_persistentobject.
This object type is an abstract class that establishes a core set of properties
inherited by all typed, persistent objects in the Docbase. Similarly, the
IDfPersistentObject class defines an analogous set of properties and methods for
representing dm_persistentobjects in the DFC. Like with the
dm_persistentobject object, you cannot create an IDfPersistentObject
directly.

The IDfPersistentObject class provides setter and getter methods for all attribute
types; methods to save, fetch, and destroy the object; methods to relate the object
to other objects; methods to validate attribute values against the data dictionary;
and direct access to the DMCL. Because IDfPersistentObject is the supertype of
all typed, persistent objects in the DFC, most of the objects you will work with
will inherit these capabilities from IDfPersistentObject.

Chapter 1 – Introduction

10

The IDfSysObject class corresponds to the dm_sysobject type in the Docbase.
The dm_sysobject is a persistent object with content. A few of the most
important features of dm_sysobjects are: they can have content, they can be
checked in and out, they reside in a folder structure, they can be versioned, and
they can be subject to access control. The IDfSysObject class exposes methods
and properties to implement these features in the DFC. Every object in the
Docbase that has content is a dm_sysobject or a subtype of it. The most
common subtype of dm_sysobject is dm_document (IDfDocument in the
DFC), which is Documentum’s generic representation of a document in the
Docbase. Consistent with its Docbase counterpart, the IDfDocument class does
not expose any additional methods or properties beyond those inherited from
IDfSysObject.

Table 1.2 contains a few of the most common Docbase classes found in the DFC.
In Visual Basic, these classes are contained in the DFCLib type library.

Table 1.2 - DFC Docbase Classes

DFC Class Docbase Object
IDfACL dm_acl, an access control list
IDfActivity dm_activity, a workflow activity
IDfDocument dm_document, a document
IDfFolder dm_folder, a folder
IDfFormat dm_format, a format object
IDfGroup dm_group, a user group
IDfPersistentObject dm_persistentobject, an abstract, persistent object type
IDfProcess dm_process, a workflow template
IDfSysObject dm_sysobject, a content object type
IDfUser dm_user, a user
IDfWorkflow dm_workflow, a workflow (run-time version of

dm_process)
IDfWorkItem dmi_workitem, a workflow task

1.5.2 Service Classes

The second category of classes in the DFC is one that provides services, for
example, IDfQuery, IDfOperation, and IDfSession. These classes do not have a

Chapter 1 – Introduction

11

hierarchical inheritance tree like the Docbase classes discussed previously.
Instead, these classes live in a relatively flat library and are manufactured by the
DfClientX factory class, or are returned by other classes' methods. These classes
represent services and objects that are useful to developers, but do not necessarily
represent real Docbase objects.

Table 1.3 contains a few of the most common service classes found in the DFC.
In Visual Basic, these classes are also contained in the DFCLib type library.

Table 1.3 - DFC Service Classes

DFC Class Purpose
DfClientX Provides factory methods for many DFC objects, and

access to the DFC from COM (i.e., Visual Basic).
IDfCollection Encapsulates a collection object
IDfDocbaseMap Encapsulates information about a Docbase and the

DocBroker
IDfException Implements exception handling
IDfFile Encapsulates a file system file
IDfId Encapsulates the ID data type
IDfList Implements a simple list of objects
IDfLoginInfo Encapsulates login information
IDfOperation (and all
of its specialized
subtypes)

Encapsulates the Documentum-provided library
operations

IDfProperties Encapsulates property information for an object
IDfQuery Implements a query
IDfQueryMgr Encapsulates complex and cross-Docbase queries
IDfSession Encapsulates a session
IDfTime Encapsulates the TIME data type
IDfTypedObject Encapsulates typed objects (i.e., just about anything in

the Docbase)
IDfValueAssistance Implements the value assistance for an object
IDfVirtualDocument Encapsulates a virtual document

Chapter 1 – Introduction

12

1.5.3 Documentum Desktop Classes

Finally, there is a set of classes that are unique to the Documentum Desktop.
These classes provide specialized services to the client, for example,
DcLoginManager, DcReport, and DcRunQuery. These classes make developing
Desktop applications a little easier by encapsulating common activities into
classes that contain standardized user interface elements. In Visual Basic, these
classes can look like part of the DFC because, after they are referenced in the
project settings, they appear in Visual Basic’s IntelliSense®. However, they are
actually separate. Notice that these classes all start with a Dc or IDc prefix
instead of Df or IDf.

Table 1.4 contains a few of the most common Documentum Desktop classes. In
Visual Basic, these classes are contained in libraries and components that begin
with a Dc prefix.

Table 1.4 – Documentum Desktop Classes

DFC Class Purpose
DcComponentDispatcher Encapsulates initializing, running, and de-

initializing Documentum COM components
DcItems Implements a container to pass items among COM

components
DcLoginManager Encapsulates the login process
DcReport Implements exception and error handling
DcRunQuery Encapsulates a basic query mechanism, including a

UI to display the results
The Docbase validation
and Docbase-aware
screen controls

Encapsulates numerous screen controls that have
built-in awareness of the Docbase.

1.6 Overview Of A Documentum Desktop
Application

This section is a preview of Chapter 2, Getting Started with Applications and
Components. In it, I give you an overview of the structure and flow of a generic
Documentum Desktop application. You will find more detail in Chapter 2.

Chapter 1 – Introduction

13

Documentum applications usually begin by acquiring references to local client
objects. The local client objects are DfClientX and IDfClient.

Dim cx As DfClientX
Dim client As IDfClient

' set up factory class
Set cx = New DfClientX

' get local DFC clients
Set client = cx.getLocalClient

Once instantiated, these objects load all the necessary client-side Documentum
libraries. The DfClientX object acts as a factory and can manufacture most of the
DFC objects you will use. The IDfClient object contains everything necessary to
implement the client side of the Docbase connection.

The next step is to establish a session between the application and the server.
There are several ways this can be accomplished. One approach is to use an
IDfLoginInfo object. Another approach is to use the DcLoginManager. Both of
these approaches are discussed in detail in Chapter 5, Proven Solutions to
Common Tasks. The result of either approach is an IDfSession object, which
encapsulates the connection between the application and the Documentum Server.

Dim li As IDfLoginInfo
Dim session As IDfSession

' manufacture a li object
Set li = cx.getLoginInfo

' set li properties
li.setUser ("user")
li.setPassword ("password")
li.setDomain ("domain")

' login and get session object
Set session = client.newSession("docbase", li)

Obtaining a valid session (IDfSession object) is necessary since nearly every class
and method in the DFC requires a reference to a valid session object.

Chapter 1 – Introduction

14

Once a session is established with the Documentum Server, your application can
begin its custom processing. Most likely, your application will create or access
objects in the Docbase. Most methods that return objects from the Docbase will
return them as IDfPersistentObjects. Remember, the IDfPersistentObject is the
abstract supertype of all directly accessible objects in the Docbase. You almost
always cast this object to its specific subtype (e.g., IDfSysObject if it is a
dm_sysobject). You will want to read the section, Interface Inheritance and
Type Casting in Visual Basic, later in this chapter for more information about
casting.

Dim sobj As IDfSysObject

' create a new document object and cast it to an IDfSysObject
Set sobj = session.newObject("dm_document")

' set some attributes
sobj.setContentType ("crtext")
sobj.setObjectName ("my object")

' set content
sobj.setFile ("c:\my_text_file.txt")

' save it
sobj.save

If your application needs DFC objects such as a query object (IDfQuery), Id
object (IDfId), or operation object (IDfOperation), they can be manufactured by
the DfClientX object. For example:

Dim q As IDfQuery
Dim id As IDfId
Dim opObj As IDfCheckinOperation

' manufacture query object
Set q = cx.getQuery

' manufacture an id object
Set id = cx.getId("0900218d80053e47")

' manufacture an operation object
Set opObj = cx.getOperation("Checkin")

Chapter 1 – Introduction

15

Other service-type objects, such as IDfCollection, are returned as results of
methods.

Dim col As IDfCollection
q.setDQL "select * from dm_document where folder('/Temp')"

' execute query and return results in collection object
Set col = q.execute(session, DF_READ_QUERY)

When your application quits, it should disconnect from the Docbase and close its
session.

session.disconnect

In general, this is how all Documentum Desktop applications function–both
components and applications. Of course, the magic is in the details of what
happens between the login and the disconnect. Starting with Chapter 2, Getting
Started with Applications and Components, I’ll begin to draw back the curtains
and reveal some of that magic.

1.7 Interface Inheritance And Type Casting
In Visual Basic

The DFC prior to version 5.1 relied upon Microsoft's virtual machine to
implement the bridge between the Java code in which it was written, and the
COM objects in Visual Basic, which used it. A shortcoming of Microsoft's virtual
machine was it did not implement interface inheritance for COM objects. The
result was that you could not inherit methods and properties from DFC supertype
interface classes to subtype interface classes. There was a work-around, but it
required you to use twice as many variables, one for the supertype and one for the
subtype, and call methods on both objects.

For example, consider the hierarchy of DFC classes (really interfaces) depicted in
Figure 1.3.

Chapter 1 – Introduction

16

Figure 1.3 - The IDfDocument Interface Hierarchy

In Java, if you instantiate an IDfDocument object, it inherits all of the properties
and methods of the classes in its hierarchy. For example, the save() method is
defined in the IDfPersistentObject interface, and the setTitle() method is
defined in the IDfSysObject interface. When an IDfDocument is instantiated, it
inherits both the save() method and the setTitle() method because they
are methods of classes in its hierarchy. To illustrate, consider the following Java
snippet:

IDfDocument dObj = null;

dObj = (IDfDocument) session.newObject("dm_document");
dObj.setTitle("Test Object 1");
dObj.save();

In this code a new IDfDocument object, dObj, is instantiated by assigning it to
the result of the session.newObject() method. The
session.newObject() method returns an IDfPersistentObject, which is
cast to the appropriate subtype, in this case, IDfDocument. The remainder of the
code sets the title of the object using setTitle() inherited from
IDfSysObject, and saves it using save() inherited from IDfPersistentObject.

In Visual Basic, with the DFC prior to version 5.1, the same code is a little more
awkward because of the necessary work-around.

Chapter 1 – Introduction

17

Dim sObj as IDfSysObject
Dim pObj as IDfPersistentObject

Set pObj = session.newObject("dm_document")
Set sObj = pObj
sObj.setTitle("Test Object 1")
pObj.save

In this code a new IDfPersistentObject object, pObj, is instantiated by assigning
it to the result of the session.newObject() method. The
IDfPersistentObject must be cast to the appropriate subtype, in this case,
IDfSysObject. The cast is achieved by using the Set operation: Set sObj =
pObj. Notice that in the remainder of the code, both objects are required:
title is set using setTitle() on the IDfSysObject, and the save is executed
using save() on the IDfPersistentObject.

This type of casting only works if the two classes involved are compatible (i.e., in
a supertype-to-subtype relationship or a peer-to-peer relationship). The
disadvantage to this methodology and a frequent point of confusion is that sObj
has access to only the methods defined in the IDfSysObject class and none of the
methods defined in IDfPersistentObject. Therefore, the setTitle() method is
invoked from the sObj and the save() method from the pObj, even though
both variables reference the same object.

Having said all of that, if you are using DFC 5.1 or later, you don't need to worry
about casting. Starting with DFC version 5.1, Documentum wrote their own
Java-COM bridge based upon Sun's virtual machine. The Documentum
implementation of the Java-COM bridge fully implements interface inheritance
and obviates the need for the work-around. For example, the following code
snippet is now valid in Visual Basic:

Dim dObj as IDfDocument

Set dObj = session.newObject("dm_document")
dObj.setTitle("Test Object 1")
dObj.save

In some respects, the casting done here is even better than that in Java. With the
new Java-COM bridge, there is no need to explicitly cast types; it is smart enough

Chapter 1 – Introduction

18

to do it for you. Notice that the IDfPersistentObject returned by
session.newObject() is automatically cast to an IDfDocument object
based upon the declaration of dObj. Very nice.

The examples in the remainder of this book assume you are using at least DFC 5.1
and are taking advantage of the Documentum Java-COM bridge.

Chapter 2 – Getting Started with Applications and Components

19

2
2 Getting Started With

Applications And
Components

There are two types of Documentum applications discussed in this book:
standalone applications and components. Standalone applications are programs
that run in their own process space and are usually contained in .EXE files.
Users can access these applications from the Start menu or a desktop icon.

Components are Microsoft COM objects that must be loaded into a running
program’s process space to function (e.g., Microsoft Explorer). These
applications are usually contained in .DLL files and "launched" from the parent
process. The Documentum Desktop is comprised mostly of a collection of
components that load themselves into the Microsoft Explorer process space.
Therefore, the Documentum Desktop serves as a model and framework for
developing additional client applications and components.

Chapter 2 – Getting Started with Applications and Components

20

In this chapter, I discuss how to set up Visual Basic projects for both standalone
applications and components, and provide skeleton code for each. I also discuss
debugging and testing techniques, modifying Documentum stock components,
and how to modify the Documentum Desktop menu to launch applications and
components. This chapter does not concentrate on the why of doing things the
way they are done, but rather the how of doing them. The goal of this chapter is
to create the infrastructure in which the rest of the techniques in this book can be
implemented. If you are really interested in the why of creating applications or
components in this manner, I encourage you to see Documentum's publications on
the subject, most notably Developing Documentum Desktop Client Components.

The procedures outlined in the following sections assume you have the
Documentum Desktop installed on the same computer with Visual Basic. This is
necessary in order to access the DFC type libraries and components from Visual
Basic.

2.1 Building A Standalone Application
This chapter starts with the standalone application since it is a little simpler to
understand and implement than the component. You would choose to write a
standalone application if you are not using the Documentum Desktop as your
primary interface with the Docbase. For example, your application may allow
users to see only a certain part of the Docbase, or certain types of objects, or
present the Docbase in a particular manner, or implement a business process via
its UI. These are types of customizations easier to implement in a standalone
application than in the Documentum Desktop using components.

The general procedure to create a standalone application is:

• Create a new Standard EXE project in Visual Basic,
• Create a module,
• Add login logic to the module,
• Have the module load a form and pass the session Id to the form,
• Add all the logic the form needs to operate,
• Test and debug the application,
• Package and deploy the application.

Chapter 2 – Getting Started with Applications and Components

21

2.1.1 Setting Up A Standalone Application Project

The steps to set up a new Visual Basic project for developing a Documentum
Desktop standalone application are as follows:

1. Create a folder on your hard drive with the name of your application to
hold the application files.

2. Start Visual Basic.
3. On the New Project dialog, choose Standard EXE, and click Open.
4. From the Project menu, choose Properties.
5. The Project Properties dialog box, similar to the one shown in Figure 2.1

should be visible. On the General tab, enter a Project Name. (In this
example, MyProject.)

Figure 2.1 - Project Properties - General Tab

6. Enter a description of your project in the Project Description field.
7. Change the Startup Object to be Sub Main.
8. Click the Make tab. The Make tab should look similar to Figure 2.2.
9. On the Make tab, select Auto Increment for the Version Number. This

ensures that each build of your application has a new version number to
help you track revisions.

10. Enter a title in the Title field. (In this example, MyProject.)

Chapter 2 – Getting Started with Applications and Components

22

Figure 2.2 - Project Properties - Make Tab

11. You may also want to enter information in the Version Information
fields. This information is then available from Microsoft Explorer.

12. Click the Compile tab. The Compile tab should look similar to Figure
2.3.

Figure 2.3 - Project Properties - Compile Tab

Chapter 2 – Getting Started with Applications and Components

23

13. Select Compile to Native Code, the No Optimization, and the Create
Symbolic Debug Information options.

14. Click OK.
15. Select References from the Project menu. The References dialog box,

similar to the one shown in Figure 2.4 should be visible.

Figure 2.4 - References Dialog Box

16. Add the following references to your project:

• Documentum Foundation Class Type Library
• Documentum Desktop Item Server Type Library
• Documentum Login Manager Type Library
• Documentum Report Manager Type Library
• Documentum Desktop Component Assistant
• Documentum Desktop Component Dispatcher Type Library

17. Click OK.
18. Click on Form1 in the Project Explorer window of the Visual Basic

IDE. Name the form in the Properties window below the Project
Explorer. (For this example, name it MyAppForm.)

19. Right-click in the Project Explorer window, and add a Module to your
project. Give it a name in the Properties window below the Project
Explorer. (For this example, name it MyAppCode.) Your project should
look like the one shown in Figure 2.5.

Chapter 2 – Getting Started with Applications and Components

24

Figure 2.5 - Project Explorer Window for MyProject

20. Open the MyAppCode module you just created, and create an empty

subroutine named Main.
21. From the File menu, choose Save Project and save your project to the

folder you created in step 1.

You are now ready to begin writing your application.

2.1.2 Application Skeleton Code

The following source code implements a skeleton Documentum Desktop
standalone application. This code omits most of error checking and other
processing that is necessary to implement a robust standalone application. Its
intent is to provide the minimum framework necessary for implementing the
topics discussed in the remaining chapters of this book. The application itself
doesn't do anything useful. The rest of this section assumes you created your
project as described above and have one code module named MyAppCode, and
one form named MyAppForm.

The Main() subroutine in the MyAppCode module executes first when the
application is launched because we configured it to do so in step 7. The Main()
subroutine handles logging into the Docbase, and loading the MyAppForm form.

Chapter 2 – Getting Started with Applications and Components

25

Source Code A working example of this source code can be found in the
"Chapter2/Application" directory of the source code archive.

' MyAppCode module

Option Explicit

' DCTM globals
Public loginMgr As New DcLoginManager

Sub Main()
 Dim sessionId As String
 Dim frm As New MyAppForm

 ' if no session, login
 If (sessionId = "") Then
 ' use login manager to login
 sessionId = loginMgr.Connect("", "", "", "", 0)
 End If

 ' if no session, error out
 If (sessionId = "") Then
 MsgBox "Could not Login.", vbCritical, "Could Not Log In"
 Set loginMgr = Nothing
 End
 End If

 ' pass sessionId to form
 ' assumes form has public string variable named sessionId
 frm.sessionId = sessionId

 ' show form
 frm.Show

 Set frm = Nothing

End Sub

The Main() subroutine obtains a Docbase session using the Login Manager, and
passes the session Id to the form by assigning it to a public variable in the form.
The Login Manager is discussed in Chapter 5, Proven Solutions to Common
Tasks. For now, just know that it manages the login process by displaying a login
UI, authenticating the user, and returning a session Id.

Chapter 2 – Getting Started with Applications and Components

26

The skeleton code for the application's form is next. It is important to notice that
it contains a Public variable named sessionId, which is set from the
Main() subroutine when the form is loaded. Also, notice that the form contains
its own local instances of the DfClientX, IDfClient, and IDfSession, the DFC
client objects. Though not technically necessary, all forms in your application
should follow this best practice: the session Id is passed in as a String variable,
and each form contains local DFC client objects.

By declaring the DfClientX, IDfClient, and IDfSession objects global to the form,
every subroutine and function on the form can access them–and probably will. It
is important to note that instances of the DfClientX, IDfClient, and IDfSession are
instantiated in the Form_Load() subroutine. Instantiating these variables in
the Form_Load() subroutine ensures that they are instantiated as soon as the
form is loaded, and nothing can use them before then.

' MyAppForm form

Option Explicit

' public var set from Main
Public sessionId As String

' private vars used globally in this form
Private cx As DfClientX
Private client As IDfClient
Private sessionObj As IDfSession

Private Sub Form_Load()

 ' setup dfc client objects
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set sessionObj = client.findSession(sessionId)

 ' your code here . . .

End Sub

Chapter 2 – Getting Started with Applications and Components

27

2.1.3 Debugging And Testing The Application

For the most part, debugging and testing standalone Documentum Desktop
applications is no different than debugging and testing any other Visual Basic
application: you can set breakpoints, output debug statements to the Immediate
window, and observe variables in the Watch window. You can also start and stop
your application using the Visual Basic debugging VCR buttons and step into, or
over subroutines.

2.1.4 Packaging And Deploying the Application

After writing, debugging, and testing your application, you may want to revisit
step 13 in Section 2.1.1, Setting up a Standalone Application Project, to disable
debugging, and choose Optimize for Fast Code. Once you have recompiled, the
easiest way to deploy your application is to use the Package & Deployment
Wizard that comes as part of the Microsoft Visual Studio. I am not going to detail
the use of the Packaging & Deployment Wizard, but I do want to make one point
about the configuration of your deployment file.

During the process of creating a deployment file, the wizard will ask you to
identify the .DLL files referenced by your application that you would like to
bundle in the deployment file. To avoid any licensing or legal issues with
redistribution of Documentum binaries, I suggest that you unselect DFC.TLB and
any .DLL that starts with Dc, or has Documentum in its path, as shown in
Figure 2.6.

The output of the Package & Deployment Wizard is a .CAB file, a setup.exe
program, and a setup.LST file. These files are all that are necessary to install
your application on an end-user's workstation. Note that since you explicitly
omitted key Documentum files from the package, this .CAB file will only deploy
to workstations that already have the Documentum Desktop installed.

Chapter 2 – Getting Started with Applications and Components

28

Figure 2.6 - Package & Deployment Wizard - Unselect Documentum .DLLs

2.2 Building A Component
Now that you have seen what goes into a standalone application, let’s look at
Documentum Desktop components. You might consider building a component if
you want to specialize the Documentum Desktop or extend its functionality. For
example, you might create a custom properties dialog, implement a business rule
with a custom UI, or launch a workflow. The distinction is: the Documentum
Desktop will be your primary interface with the Docbase and the component will
change or augment its basic functionality. As you will see, building a component
is a little more involved than building a standalone application; however, there are
many similarities. For instance, the Docbase login process is the same, there is a
central entry point to the code that loads the component’s form, and the session Id
is passed to the form as a string. Like the standalone application skeleton code
presented in the previous section, this component's code doesn't do anything
useful either; it's a framework.

Unlike standalone applications, components must be loaded into parent processes
to function and are deployed into the Docbase using DocApps. DocApps are
special archive files created with the Documentum Application Builder, and are
used to deploy, among other things, components into the Docbase. DocApps, as
they relate to deploying components, are discussed later in this chapter. The facts

Chapter 2 – Getting Started with Applications and Components

29

that components reside in the Docbase and must be loaded into parent processes
to function make testing and debugging them a little more difficult. This chapter
will present two techniques for debugging and testing components.

The component we build in this section is designed to run in the Documentum
Desktop by selecting an object in the Windows Explorer and clicking a menu
item.

The general procedure to create a component is:

• Create a new ActiveX DLL project in Visual Basic,
• Create a form,
• Add IDcComponent_Init(), IDcComponent_Run(), and

IDcComponent_DeInit() methods to the class module,
• Have the IDcComponent_Run() method pass the session Id and items

collection to the form,
• Add all the logic the form needs to operate,
• Test and debug the component,
• Package and deploy the component in a DocApp.

2.2.1 A Word About COM And Documentum Components

Before I discuss setting up a component project and the skeleton code, I thought I
should say a few words about COM, Documentum components, and why the
project and skeleton code work the way they do. To begin, COM stands for
Component Object Model, and is an invention of Microsoft. COM is a software
architecture that allows applications to be built by gluing together binary software
components using a standard interface for interoperability. This is accomplished
by requiring every component to have a mechanism for dynamically discovering
and calling each other's interfaces. This mechanism is called the IUnknown
interface, and all COM components are required to implement it.

Documentum takes this concept a step further by requiring components used by
the Documentum Desktop to implement the IDcComponent interface, which in
turn implements the IUnknown interface in the COM model. Having components
implement the IDcComponent interface allows them to be used in both the

Chapter 2 – Getting Started with Applications and Components

30

Documentum Desktop as well as other COM applications. In Documentum
components, the IDcComponent interface is implemented with:

Implements DCCOMPONENTLib.IDcComponent

at the beginning of the code module.

All Documentum components are managed and run by the Documentum
Component Dispatcher (DcComponentDispatcher) and the DocApp Runtime
(DART), which are integrated into the Microsoft Explorer namespace as part of
the Documentum Desktop. These two pieces of code are the heart of the
Documentum Desktop. The Documentum Component Dispatcher and DART rely
on the Documentum Dynamic Component Delivery system (a COM delivery
system based on Microsoft's Internet Component Delivery system) to deliver the
right components to the Documentum Desktop when they are needed.

The IDcComponent interface implements three methods that the Documentum
Component Dispatcher and DART use to instantiate, run, and destroy
Documentum components. These methods are: IDcComponent_Init(),
IDcComponent _Run(), and IDcComponent_DeInit(). You will see
in the skeleton code that most of the coding is done in these three methods and
that you never see any COM code per se; Documentum has graciously shielded
you from it.

Though accessible, you should never call a Documentum component's Init(),
Run(), or DeInit() COM methods directly. Doing so circumvents DART,
and operates the component outside of Documentum’s component management
process. Always use the Documentum Component Dispatcher to access
components.

2.2.2 Setting Up A Component Project

Following are the steps to set up a new Visual Basic project for developing a
Documentum Desktop component.

1. Create a folder on your hard drive with the name of your component to
hold the component files. Inside that folder, create another folder named
RefCopy to hold a reference copy of your DLL.

Chapter 2 – Getting Started with Applications and Components

31

2. Start Visual Basic.
3. On the New Project dialog, choose ActiveX DLL, and click Open.
4. From the Project menu, choose Properties.
5. The Project Properties dialog box, similar to the one shown in Figure 2.7

should be visible. On the General tab, enter a Project Name. This name
becomes the name of your component's type library, not the name of the
component. (In this example, MyProjectLib.)

Figure 2.7 - Project Properties - General Tab

6. Enter a description of your project in the Project Description field, and

ensure the Threading Model is set for Apartment Threaded.
7. Click the Make tab. The Make tab should look similar to Figure 2.8.
8. On the Make tab, select Auto Increment for the Version Number. This

is very important since Documentum's Dynamic Component Delivery
mechanism won't deliver new components that have the same version as
ones already installed on the user's workstation.

9. Enter a title in the Title field. (In this example, MyProjectLib.)
10. You may also want to enter information in the Version Information

fields. This information is then available from Microsoft Explorer.
11. Click the Compile tab. The Compile tab should look similar to Figure

2.9.

Chapter 2 – Getting Started with Applications and Components

32

Figure 2.8 - Project Properties - Make Tab

Figure 2.9 - Project Properties - Compile Tab

12. Select Compile to Native Code, the No Optimization, and the Create

Symbolic Debug Information options.
13. In the DLL Base Address field, enter a value between &H60000000 and

&H68000000 as the base address for your component. You can enter any
value you like in this field but it should end with 0000. Windows will

Chapter 2 – Getting Started with Applications and Components

33

attempt to load your component into this address space. However, if this
space is already occupied, Windows must do an expensive and time-
consuming memory swap to free the space. By systematically assigning
base addresses for your components, you reduce the risk of this happening
(a little).

14. Click the Component tab. The Component tab should look similar to
Figure 2.10.

Figure 2.10 - Project Properties - Component Tab

15. Select No Compatibility in the Version Compatibility control group.
16. Click the Debugging tab. The Debugging tab should look similar to

Figure 2.11.
17. Select Start Program, and enter explorer.exe in the box.
18. Click OK.
19. In the Project Explorer window of the Visual Basic IDE, select the

Class1 class. In the Properties window, give your component a name.
(In this example, MyCompClass.)

20. Right-click in the Project Explorer window, and add a Form to your
project. Give it a name in the Properties window. (For this example,
name it MyCompForm.) Your project should now look like Figure 2.12.

21. Compile your project by choosing Make MyProjectLib.dll from the File
menu.

Chapter 2 – Getting Started with Applications and Components

34

Figure 2.11 - Project Properties - Debugging Tab

Figure 2.12 - Project Explorer Window for MyProject

22. Copy your project's DLL (in this example, MyProjectLib.dll) into

the RefCopy subdirectory.
23. In Visual Basic, choose Properties from the Project menu. The

Properties dialog box should appear.
24. Click the Component tab.
25. Select Binary Compatibility, and enter (or navigate to) the DLL in your

project's RefCopy subdirectory (see Figure 2.13). Maintaining Binary
Compatibility will be very important from here on. Usually, when Visual
Basic compiles a component it generates a new COM Id, or GUID

Chapter 2 – Getting Started with Applications and Components

35

(Globally Unique Identifier), for the component. This Id distinguishes this
version of this component from all of the COM components in the world.
By setting Binary Compatibility, you are telling Visual Basic to use the
same COM Id assigned to the existing component, and not to generate a
new one. Documentum uses the COM Id to determine which component
to run. If the COM Id of your component and the COM Id in your
DocApp are different, your component won't run.

Figure 2.13 - Project Properties – Component Tab

26. Click OK.
27. Select References from the Project menu. The References dialog box,

similar to the one shown in Figure 2.14 should be visible.
28. Add the following references to your project:

• Documentum Foundation Classes Type Library
• Documentum Desktop Item Server Type Library
• Documentum Login Manager Type Library
• Documentum Report Manager Type Library
• Documentum Desktop Component Assistant
• Documentum Desktop Component Dispatcher Type Library

29. Click OK.
30. From the File menu, choose Save Project.

Chapter 2 – Getting Started with Applications and Components

36

Figure 2.14 - References Dialog Box

You are now ready to begin writing your component.

2.2.3 Component Skeleton Code

The following source code implements a skeleton Documentum Desktop
component. This code omits most of error checking and other processing that is
necessary to implement a robust component. Its intent is to provide the minimum
framework necessary for implementing the topics discussed in the remaining
chapters of this book. Much of a component’s complexity resides not only in
what the component does, but also in what it needs for input, and when it is valid
and safe to run. If you want to see an example of a more robust component, see
the source code for the DcProperties component that is distributed in the
Documentum Desktop Component Source archive*. The rest of this section
assumes you created your project as described above and have one class module
named MyCompClass, and one form named MyCompForm.

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 2 – Getting Started with Applications and Components

37

The MyCompClass module contains only the three methods necessary to
instantiate, run, and destroy the component: IDcComponent_Init(),
IDcComponent_Run(), and IDcComponent_DeInit().

• The IDcComponent_Init()method receives data passed to the
component from the parent process, logs into the Docbase, allocates
resources, and–if necessary–processes the input data and saves them to
local variables.

• The IDcComponent_Run() method is where the component does all
of its work. In the skeleton code, the IDcComponent_Run() function
opens the MyCompForm form, and the form actually does all of the work.

• The IDcComponent_DeInit() method releases all of the
component's resources assigned in IDcComponent_Init() and
terminates the component.

Source Code A working example of this source code can be found in the
"Chapter2/Component" directory of the source code archive.

' MyCompClass class

Option Explicit

Implements DCCOMPONENTLib.IDcComponent

' private vars
Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession
Private hWndParent As Long
Private myItems As IDcItems
Private myReporter As IDcReport

Private Const GWL_HWNDPARENT As Integer = -8

Private Function IDcComponent_Init(ByVal docbaseName As String, _
 ByVal userOSName As String, _
 ByVal domain As String, _
 ByVal contextID As String, _
 ByVal items As IDcItems, _
 ByVal hWndForDialog As Long, _
 ByVal reporter As IDcReport, _
 ByVal stringForIID As String, _

Chapter 2 – Getting Started with Applications and Components

38

 Optional ByVal itemContainer As _
 Variant) As Long

 Dim loginMgr As DcLoginManager
 Dim sessionID As String

 ' setup reporter
 Set myReporter = reporter

 On Error GoTo HandleError

 ' do login
 Set loginMgr = New DcLoginManager
 sessionID = loginMgr.Connect(docbaseName, _
 userOSName, _
 "", _
 domain, _
 IS_DOCBASE_CONNECTED)

 ' setup dfc client objects
 Set cx = New DfClientX
 If (sessionID <> "") Then
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionID)
 End If

' Uncomment this code for debugging
' cx.setTraceLevel (10)
' cx.setTraceFileName ("ComponentTrace.txt")

 ' get items and window handles
 Set myItems = items
 myItems.Type = DC_OBJECT_ITEM_IID_STRING
 hWndParent = hWndForDialog

 ' if we got here, success
 IDcComponent_Init = DC_COMP_SUCCESS
 Exit Function

HandleError:

 myReporter.AddEntry Err.Description, True, Err.Source, 0, _
 Err.Number
 IDcComponent_Init = DC_COMP_FAILURE

End Function

Chapter 2 – Getting Started with Applications and Components

39

You will notice that the IDcComponent_Init() method requires a lot of
input arguments. Fortunately, the Documentum Component Dispatcher provides
them so you don't have to. Many of these arguments are saved to local variables
for further processing (e.g., reporter, items, and hWndForDialog) by
either this method or the IDcComponent_Run()method. Most of the other
arguments are used by the Login Manager* to establish a session with the
Docbase.

Private Function IDcComponent_Run() As Long
 Dim frm As MyCompForm
 Dim item As Variant

 ' assume success
 IDcComponent_Run = DC_COMP_SUCCESS

 On Error GoTo HandleError

 For Each item In myItems

 ' make new form
 Set frm = New MyCompForm

 ' pass vars to form
 frm.objId = item.ID
 frm.sessionID = session.getSessionId

 ' display form
 frm.Show vbModal

 ' unload
 Set frm = Nothing

 Next item

 Exit Function

HandleError:

 myReporter.AddEntry Err.Description, True, Err.Source, 0, _
 Err.Number
 IDcComponent_Run = DC_COMP_FAILURE

End Function

* The Login Manager is discussed in Chapter 5, Proven Solutions to Common Tasks.

Chapter 2 – Getting Started with Applications and Components

40

As I mentioned earlier, the IDcComponent_Run() function is where the
component does most of its work. In this component, the
IDcComponent_Run() function unpacks some of the input arguments,
namely the objects selected in the Windows Explorer interface, and ships them off
to the MyCompForm, which actually does the work. This is done by iterating
over the myItems collection (IDcItems), created by the
IDcComponent_Init() function, using a For Each loop. Within the loop,
I assign the object Id and the session Id to the form's two public variables and
show the form. This causes the form to be displayed for each object selected in
the Windows Explorer. Note that the form is displayed in modal mode. If it
wasn't, it would be displayed and instantly destroyed, accomplishing nothing but a
blink on your monitor. Also, note that the object Id and session Id are both passed
to the form as String variables.

The IDcComponent_DeInit() method is simple. It destroys the DfClientX,
IDfClient, and IDfSession variables instantiated in the
IDcComponent_Init() function.

Private Function IDcComponent_DeInit() As Long

 On Error GoTo HandleError

 Set cx = Nothing
 Set client = Nothing
 Set session = Nothing
 IDcComponent_DeInit = DC_COMP_SUCCESS
 Exit Function

HandleError:

 myReporter.AddEntry Err.Description, True, Err.Source, 0, _
 Err.Number
 IDcComponent_DeInit = DC_COMP_FAILURE

End Function

The skeleton code for the component's form is next. It is important to notice that
it contains two Public variables named sessionId, and objId that are set
by the IDcComponent_Run() method when the form is loaded. Also, notice
that the form contains its own local instances of the DfClientX, IDfClient, and

Chapter 2 – Getting Started with Applications and Components

41

IDfSession DFC client objects. All forms in your application should follow this
model: the session Id and object Ids (if applicable) are passed as String
variables, and each form contains local DfClientX, IDfClient, and IDfSession
DFC client objects.

' MyCompForm form

Option Explicit

' public var set from Run
Public sessionId As String
Public objId As String

' private vars used globally in this form
Private session As IDfSession
Private cx As DfClientX
Private client As IDfClient
Private reporter As New DcReport

Private Sub Form_Load()

 ' setup dfc
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionId)

 ' your code here . . .

End Sub

By declaring the DfClientX, IDfClient, and IDfSession objects global to the form,
every subroutine and function on the form can access them–and probably will. It
is important to note that instances of the DfClientX, IDfClient, and IDfSession are
instantiated in the Form_Load() subroutine. Instantiating these variables in
the Form_Load() subroutine ensures that they are instantiated as soon as the
form is loaded and nothing can use them before then.

2.2.4 Debugging And Testing The Component

Run-time debugging and testing of Documentum Desktop components can be
difficult, mainly because the components run as in-process servers. This means
that you must have a parent process that you can debug and load your component

Chapter 2 – Getting Started with Applications and Components

42

into. I use two different techniques to debug components. The first technique is
to setup a test harness program in Visual Basic, and load your component into it.
The second technique is to setup a test harness DocApp and let Windows
Explorer act as the parent process for your component. I will discuss both
methods here, but note that the DocApp approach will utilize techniques not
covered until later in this chapter.

2.2.4.1 Using A Visual Basic Test Harness

The Visual Basic test harness is a regular .EXE program that references your
component’s .DLL and loads it into its process. For convenience, you can create
a project group that contains both your test harness project and your component
project. A project group will make switching between the test harness and the
component source code easier. If you examine the code in the Documentum
Desktop Component Source archive*, you will find that all of the Documentum
components come with project groups and test harnesses.

Below are the steps to create a component test harness:

1. Follow the steps given earlier in this chapter for creating a Standalone
application. There is no need to name the module or the form unless you
really want to. The procedure below assumes you have not given them
names.

2. Name your project testHarness.
3. Select Reference from the Project menu and add your component to the

project as a reference (see Figure 2.15). In this example, my component is
MyProjectLib.

4. Save your project.
5. Select Add Project from the File menu. Click the Existing tab, navigate

to your component project, and add it. Your Project Explorer should
now contain both projects: your test harness and your component (see
Figure 2.16).

6. Select Save Project Group from the File menu. (In this example, the
project group is named TestMyComp).

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 2 – Getting Started with Applications and Components

43

Figure 2.15 - TestHarness References Dialog Showing MyProjectLib Component.

Figure 2.16 - Project Explorer Window with both Component Project and Test Harness Project.

Now, both your component and your test harness application are in one group,
and can be easily accessed from the Project Explorer window. Double-click
Module1 in the testHarness project and add the following test harness code.

Chapter 2 – Getting Started with Applications and Components

44

Source Code A working example of this source code can be found in the
"Chapter2/TestHarness" directory of the source code archive.

Option Explicit

' DCTM globals
Private loginMgr As DCLOGINMGRLib.DcLoginManager
Private sessionId As String

Sub Main()
 Dim frm As Form1

 Set loginMgr = New DCLOGINMGRLib.DcLoginManager

 ' if no session, login
 If (sessionId = "") Then
 sessionId = loginMgr.Connect("", "", "", "", 0)
 End If

 ' if still no session, error out
 If (sessionId = "") Then
 MsgBox "Could not Log In.", vbCritical, "Could Not" _
 & " Log In"
 Set loginMgr = Nothing
 End
 Else
 ' call form
 Set frm = New Form1
 frm.sessionId = sessionId
 frm.Show vbModal
 Set frm = Nothing
 End If

 loginMgr.disconnect (sessionId)
 Set loginMgr = Nothing

End Sub

This code should look familiar. It is essentially the Main() subroutine from the
standalone application skeleton code discussed earlier in this chapter. This code
logs into the Docbase using the Login Manager*, and then passes the session Id to
Form1. Form1 is where the interesting stuff happens.

* The Login Manager is discussed in Chapter 5, Proven Solutions to Common Tasks.

Chapter 2 – Getting Started with Applications and Components

45

As illustrated in Figure 2.17, the form for this test harness is very simple, but it
doesn't have to be. You can make it as complicated and as interactive as you like.
In fact, you can test a whole suite of components from this form if you like.
Simply add the projects to the group, add their references to the test harness, and
add controls to the form to activate them. For this example, I chose a simple
interface: a big button that says Run Component. Clicking the button will run
the MyProjectLib.MyCompClass component.

Figure 2.17 - testHarness Form1

Here is the code behind Form1.

Option Explicit

Public sessionId As String

Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession
Private reporter As DCREPORTSLib.DcReport

Private Sub Form_Load()

 ' setup dfc client vars
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionId)

End Sub

The Form_Load() subroutine runs when the form is loaded and establishes the
local DFC variables and a session for the form. When the Run Component

Chapter 2 – Getting Started with Applications and Components

46

button is clicked, the Command1_Click() subroutine runs–this is where the
real work is done.

Private Sub Command1_Click()
 Dim itemsCol As New DcItems
 Dim item As New DcObjectItem
 Dim comp As New MyProjectLib.MyCompClass
 Dim dcComp As IDcComponent

 ' cast comp to generic dcComp to get component query
 ' interface
 Set dcComp = comp

 ' hard code a valid object id
 item.ID = "0900218d80053e47"

 ' add item to collection
 itemsCol.Type = DC_OBJECT_ITEM_IID_STRING
 itemsCol.Add item

 ' init the component using the IDcCompnent interface
 ' you should NEVER do this – except here in a test harness!

 dcComp.Init session.getDocbaseName, _
 session.getUser("").getUserOSName, _
 "", _
 "", _
 itemsCol, _
 Me.hWnd, _
 reporter, _
 DC_OBJECT_ITEM_IID_STRING

 ' run the component
 dcComp.Run

 ' deinit component
 dcComp.DeInit

 Set dcComp = Nothing
 Set comp = Nothing
 Set itemsCol = Nothing
 Set item = Nothing

End Sub

Chapter 2 – Getting Started with Applications and Components

47

The first thing that occurs in this code is a MyProjectLib.MyCompClass object is
instantiated and cast to an IDcComponent class. This is necessary because we
need to address the object as a COM object. Next, the code sets up the DcItems
collection and fills it with one DcObjectItem. Note that the object Id assigned to
the DcObjectItem object, item, is hard coded, but it doesn't have to be. What
your component expects for input determines whether you pass it a DcObjectItem
object with a valid object Id, or a DcAbstractItem object with no Id. Components
that operate on objects (e.g., DcCheckin, DcCheckout, DcProperties) require
DcObjectItem objects with valid object Ids. Components that don't operate on
any particular object (e.g., DcFind) require a DcAbstractItem object. Whichever
item object type you pass, it must agree with the items parameter of the
IDcComponent_Init() function in your component class file.

Now that the item collection is properly configured, it's time to run the
component. After emphasizing that you should always use the Documentum
Component Dispatcher to run Documentum components, you can see that the test
harness code calls dcComp's Init(), Run(), and DeInit() COM methods
directly. I break the rules here with good reason: the component is not yet part of
a DocApp. Therefore, neither DART nor the Documentum Component
Dispatcher knows anything about it. If you try to use the Documentum
Component Dispatcher to run the component, DART will return an error to the
effect that it can't find, and doesn't know anything about, your component. In this
instance, it really is necessary to circumvent DART.

Set some breakpoints in your component code and run the test harness. Your
component will run until it hits your breakpoint and then return you to the Visual
Basic debugger where you then have the full facilities of Visual Basic IDE to
debug your component (e.g., local window, immediate window, step in).

2.2.4.2 Using A DocApp Test Harness

The test harness DocApp uses Windows Explorer as the parent process for your
component. In order to setup the test harness DocApp, you will need to jump
ahead and read the next three sections: Section 2.2.5, Packaging a Component;
Section 2.2.6, Adding a Component to a DocApp, and Section 2.3, Modifying the
Documentum Desktop Menu.

Chapter 2 – Getting Started with Applications and Components

48

At this point, I assume you have a compiled component (.DLL) that has a UI (i.e.,
a form or message box), followed the steps in the Section 2.2.5, Packaging a
Component, to create a .CAB file, and followed the steps in the Section 2.2.6,
Adding a Component to a DocApp, to attach it to a DocApp. Depending upon
how your component is launched, you may also have edited the Documentum
Desktop menu as described in the Section 2.3, Modifying the Desktop Client
Menu.

Now, open your component's source code in the Visual Basic IDE, set a
breakpoint, and run it. Microsoft Explorer should open because you defined it as
the debug process in step 17 when you created your component in Section 2.2.2,
Setting up a Component Project. In Microsoft Explorer, open your Docbase, log
in and do whatever is necessary to activate your component (e.g., choose a menu
item, or cause an event). Your component will run until it hits your breakpoint
and then return you to the Visual Basic debugger where you then have the full
facilities of Visual Basic IDE to debug your component (e.g., local window,
immediate window, step in).

Both of these testing methods (Visual Basic test harness and DocApp test harness)
are equally valid and equally useful. The choice of which to use is solely up to
you and your preference. The Visual Basic test harness is quick and simple to
build and implement; but doesn’t give you a total understanding of how your
component will react since it isn’t using DART. The DocApp approach is a little
more tedious to implement but will give you a thorough understanding of how
your component will react when it is installed in the Docbase. However, you
might spend more time debugging component delivery than your actual
component code. Determine the technique you are most comfortable with and use
it.

2.2.5 Packaging A Component

After writing, debugging, and testing your application, you may want to revisit
step 12 in Section 2.2.2, Setting up a Component Project, to disable debugging,
and choose Optimize for Fast Code. Once you have recompiled, the easiest
way to deploy your application is by using the Package & Deployment Wizard
that comes as part of the Microsoft Visual Studio. I am not going to detail the use
of the Packaging & Deployment Wizard, but I do want to make two points about
the configuration of your deployment file.

Chapter 2 – Getting Started with Applications and Components

49

First, during the process of creating a deployment file, the wizard will ask you to
identify the .DLL files referenced by your application that you would like to
bundle in the deployment file. To avoid any licensing or legal issues with
redistribution of Documentum binaries, I suggest that you unselect DFC.TLB and
any .DLL that starts with Dc, or has Documentum in its path, as shown in
Figure 2.18.

Figure 2.18 - Package & Deployment Wizard - Unselect Documentum .DLLs

Second, after deciding which files to include and which files to exclude from the
deployment file, the wizard will ask you to identify the source for each of these
files. Make sure that you choose Include in this cab for each file in the list (see
Figure 2.19). The Microsoft files (e.g., VB6 Runtime and OLE
Automation) default to Download from Microsoft Web site. Depending
upon your network's configuration, it could be impossible for users to download
these files during installation of the component. It’s best to distribute the
Microsoft files with your component.

The output of the Package & Deployment Wizard is a .CAB file. This is the file
you will use in the next section to include your component in a DocApp.

Chapter 2 – Getting Started with Applications and Components

50

Figure 2.19 - Package and Deployment Wizard - Include All Files in this CAB

2.2.6 Adding A Component To A DocApp

Use the Documentum Application Builder to add a component to a DocApp. I am
not going to provide a tutorial on the Documentum Application Builder; however,
I will briefly discuss attaching components to a DocApp for the purpose of testing
them.

In a DocApp, there are two types of components: global components and type-
specific components. Global components are not specific to particular object
types (e.g., DcFind). Type-specific components implement a functional class on a
specific object type (e.g., DcProperties).

The following steps create a DocApp for a global component. It does not contain
any custom object types, only an ACX form to hold the component and a global
component definition to install it. Remember, the purpose of this DocApp is
simply to test the component.

To create a DocApp to test a global component, follow these steps:

1. Start the Documentum Application Builder, and log in.
2. Choose to New from the File menu.

Chapter 2 – Getting Started with Applications and Components

51

3. Name your DocApp. (In this example, MyApp.)
4. From the Insert menu, choose Forms and then ACX Form.
5. Double-click the new ACX Form to open it for editing.
6. Give the form a name. (In this example, MyComp.)
7. Click the Add button.
8. Navigate to the .CAB file for the component you want to add, and select

it. The GUID for the component will be automatically inserted in the
Class ID field (see Figure 2.20).

Figure 2.20 - MyComp Component Added to DocApp

9. Close the form by clicking the close box in the upper right-hand corner of

the form.
10. Select Checkin Object(s) from the DocApp menu, and click OK.
11. Double-click the Global Components object to open it for editing.
12. Click the Add button.
13. Enter your component's name in the Class Name field. (In this example,

MyComp.)
14. Click the Select Component button.
15. Select the ACX Form you created in step 4, and click Add (see Figure

2.21).

Chapter 2 – Getting Started with Applications and Components

52

Figure 2.21 - MyComp ACX Added to Global Components

16. Click OK on the Functionality Description form and close the Global

Components form by clicking the close box in the upper right-hand
corner of the form.

17. Select Checkin Object(s) from the DocApp menu. Click OK in the
dialog box to checkin the entire DocApp.

18. Select Checkin DocApp from the DocApp menu. On the Check In
Application form, click Version to activate the drop-down menu and
select Same. It is crucial that you always checkin components and
DocApps as the same version. Versioned components and DocApps can
cause functionality to become disconnected, and cause untold headaches
trying to diagnose and repair them.

19. Close Documentum Application Builder.

The process to create a DocApp for testing a type-specific component is
essentially the same, except instead of installing the ACX Form as a global
component in steps 11 - 16, you associate it with a functional class of a particular
object type in the DocApp.

To create a DocApp for testing a type-specific component, follow these steps.

Chapter 2 – Getting Started with Applications and Components

53

1. Start the Documentum Application Builder, and log in.
2. Open the DcDesktopClient DocApp, or the DocApp into which you want

to insert your type-specific component.
3. From the Insert menu, choose ACX Form.
4. Double-click the new ACX Form to open it for editing.
5. Give the form a name. (In this example, MyComp.)
6. Click the Add button.
7. Navigate to the .CAB file for the component you want to add, and select

it. The GUID for the component will be automatically inserted in the
Class ID field (see Figure 2.20).

8. Close the form by clicking the close box in the upper right-hand corner of
the form.

9. Select Checkin Object(s) from the DocApp menu, and click OK.
10. Double-click the object type to which you want to attach your functional

class.
11. Click the Functionality tab.
12. If you are adding a new function to the object type, click the Add button.

If you are replacing an existing function with a new one, select the
function from the list and click the Edit Functionality button (see Figure
2.22).

13. Enter your component's name in the Class Name field.
14. Click the Select Component button.
15. Select the ACX Form you created in step 4, and click Add.
16. Click OK on the Functionality Description form and close the type

description dialog box by clicking the close box in the upper right-hand
corner of the form.

17. Select Checkin Object(s) from the DocApp menu. Click OK in the
dialog box to checkin the entire DocApp.

18. Select Checkin DocApp from the DocApp menu. On the Check In
Application form, click Version to activate the drop-down menu and
select Same. It is crucial that you always checkin components and
DocApps as the same version. Versioned components and DocApps can
cause functionality to become disconnected, and cause untold headaches
trying to diagnose and repair them.

19. Close Documentum Application Builder.

Chapter 2 – Getting Started with Applications and Components

54

Figure 2.22 – Functionality Description Dialog for Print Document Method

You have now successfully installed your component in the Docbase and it is
available for use (i.e., testing and debugging). If your component is global, the
next step is to provide a mechanism to launch the component. If your component
is type-specific, DART will generate the event that invokes the functional class.

2.3 Modifying The Documentum Desktop
Menu

One of the easiest ways to launch a component or an application is from the
Documentum Desktop menu. Global and type-specific components can easily be
added to the menu using the Menu System Designer tool. This section discusses
the basics for modifying the Documentum Desktop menu to include new
functionality. But first, a few comments about menus.

Chapter 2 – Getting Started with Applications and Components

55

2.3.1 A Word About Menus

In previous versions of Documentum, the menu existed in the desktop client
application (WorkSpace®) and could be modified dynamically by script files
when users logged in. This was a blessing and a curse: A good logon script could
control the presentation of a lot of menu options, but scripting for WorkSpace was
not pretty. In Documentum 4i, the desktop client menu was contained in a file in
the Docbase named MenuSystem.ini. This was also a blessing and a curse:
Documentum provided a nice UI tool to modify menus, but took away the ability
to dynamically alter menus with logon scripts. In addition, a quick survey of your
Docbase may reveal several MenuSystem.ini files. This is a problem. How
your Docbase and users are configured, and how you want to allocate access to
custom menu options, determines which MenuSystem.ini file is used.
Documentum 5 is no different from 4i, except the name of the menu file has
changed to MenuSystem5.ini.

When the Documentum Desktop is initialized, it searches for a
MenuSystem5.ini file in the following order, and uses the first one it finds:

• /<User’s Home Cabinet>/Desktop Client/
MenuSystem5.ini

• /System/<User’s Home Group>/Desktop Client/
MenuSystem5.ini

• /System/Desktop Client/MenuSystem5.ini

This means that a user's customizations take precedence over group
customizations, and group customizations take precedence over global
customizations. This also means that if you add customizations to the global
menu (/System/Desktop Client/ MenuSystem5.ini) they will be
lost if a user has a customized menu file in their home cabinet or a group folder.
You must choose carefully which MenuSystem5.ini file to edit.

2.3.2 Adding A Global Component To The Menu

To add a global component to the Documentum Desktop menu, follow these
steps:

Chapter 2 – Getting Started with Applications and Components

56

1. Login to your Docbase as a Superuser using the Documentum Desktop
client.

2. Navigate to the /System/Desktop Client folder. I assume you are
updating the global menu file. If this is incorrect, find the appropriate
MenuSystem5.ini file instead.

3. Right-click on MenuSystem5.ini and choose Edit. This should
checkout the MenuSystem5.ini file and launch the Menu System
Designer tool.

4. In the left hand pane of the Menu System Designer Tool, scroll down and
select the &Applications menu entry.

5. Click the New button to create a new Menu Item.
6. On the Appearance tab, enter a Label, Description, Full Name, and

ToolTip for your component (see Figure 2.23).

Figure 2.23 - Appearance Tab for New Menu Item.

7. Click the Behavior tab.
8. Enter the following information on the Behavior tab:

• Command State Flag: Choose DC_CSF_ALWAYS so your menu
option is always available.

• Functional Class: You must type the name of your functional class
in the combo box; it doesn't appear there automatically (In this
example, MyComp.). See Figure 2.24.

9. Click the Environment tab.

Chapter 2 – Getting Started with Applications and Components

57

Figure 2.24 - Behavior Tab for New Menu Item.

10. Enter the following information on the Environment tab:

• Global: Check this box.
• Applications: Type the name of your DocApp in the ComboBox; it

doesn’t appear automatically (In this example, MyTestHarness.).
See Figure 2.25.

Figure 2.25 - Environment Tab for New Menu Item.

Chapter 2 – Getting Started with Applications and Components

58

11. Close the Menu System Designer Tool and save the menu.
12. Check in the MenuSystem5.ini file. You can version this file if you

like.
13. Log off and back on to your Docbase to load the new menu file.

If your menu does not reflect the changes you just made, you may need to clear
your client-side caches. See Chapter 7, Tips, Tools and Handy Information, for
details about clearing the client-side caches.

2.3.3 Adding A Type-Specific Component To The Menu

Adding a type-specific component to the menu is very similar to adding a global
component.

1. Login to your Docbase as a Superuser using the Documentum Desktop
client.

2. Navigate to the /System/Desktop Client folder. I assume you are
updating the global menu file. If this is incorrect, find the appropriate
MenuSystem5.ini file instead.

3. Right-click on MenuSystem5.ini and choose Edit. This should
checkout the MenuSystem5.ini file and launch the Menu System
Designer tool.

4. In the left hand pane of the Menu System Designer Tool, scroll down and
select the &Applications menu entry.

5. Click the New button to create a new Menu Item.
6. On the Appearance tab, enter a Label, Description, Full Name, and

ToolTip for your component.
7. Click the Behavior tab.
8. Enter the following information on the Behavior tab:

• Command State Flag: Choose the command state flag appropriate
for your component. A list of command state flags is supplied in
Chapter 7, Tips, Tools and Handy Information.

• Functional Class: You must type the name of your functional class
in the combo box; it doesn't appear there automatically.

9. Click on the Environment tab.
10. Enter the following information on the Environment tab:

• Global: Do not check this box.

Chapter 2 – Getting Started with Applications and Components

59

• Applications: Type the name of your DocApp in the ComboBox; it
doesn’t appear automatically.

11. Close the Menu System Designer Tool and save the menu.
12. Check in the MenuSystem5.ini file. You can version this file if you

like.
13. Log off and back on to your Docbase to load the new menu file.

If your menu does not reflect the changes you just made, you may need to clear
your client-side caches. See Chapter 7, Tips, Tools and Handy Information, for
details about clearing the client-side caches.

2.3.4 Adding An Executable Application To The Menu

Sometimes you want a menu item to run an executable file on your hard disk,
instead of a component in a DocApp. This is also easy to accomplish with the
Menu System Designer Tool.

1. Login to your Docbase as a Superuser using the Documentum Desktop.
2. Navigate to the /System/Desktop Client folder. I assume you are

updating the global menu file. If this is incorrect, find the appropriate
MenuSystem5.ini file instead.

3. Right-click on MenuSystem5.ini and choose Edit. This should
checkout the MenuSystem5.ini file and launch the Menu System
Designer tool.

4. In the left hand pane of the Menu System Designer Tool, scroll down and
select the &Applications menu entry.

5. Click the New button to create a new Menu Item.
6. On the Appearance tab, enter a Label, Description, Full Name, and

ToolTip for this menu item.
7. Click the Behavior tab.
8. Enter the following information on the Behavior tab:

• Command State Flag: Choose the command state flag appropriate
for your component. A list of command state flags is supplied in
Chapter 7, Tips, Tools and Handy Information.

• Functional Class: Choose DcOpenFile. This will activate the
Pathname and Parameter fields.

Chapter 2 – Getting Started with Applications and Components

60

• Pathname: Enter the fully qualified path name to the application you
want to run (e.g., c:\winnt\notepad.exe)

• Parameters: Enter a parameter to pass to the application you named
in Pathname above. Unfortunately, I haven't found this to be too
useful. You can't pass "%1" like you can in DOS to indicate a
filename; you can't pass an r_object_id; and you can't pass the
result of an API call like getcontent(). The only thing you can
pass is a literal string, like "test.txt." For example, choosing this
menu option would launch NotePad and open a file named
"test.txt " every time the menu option is selected.

9. Close the Menu System Designer Tool and save the menu.
10. Check in the MenuSystem5.ini file. You can version this file if you

like.
11. Log off and back on to your Docbase to load the new menu file.

If your menu does not reflect the changes you just made, you may need to clear
your client-side caches. See Chapter 7, Tips, Tools and Handy Information, for
details about clearing the client-side caches.

2.4 Modifying Documentum Desktop
Components

Documentum has made it easy to modify several of their stock Desktop
components. First, they provide the source code* for the most common
components. Second, each component has three subroutines that were designed
for you to implement, and are called automatically by the component’s logic.
Table 2.1 summarizes these subroutines.

The following procedure is applicable to customizations using both the
DcCustomOnXXXCode() subroutines and purely custom code. Certainly,
implementing the DcCustomOnXXXCode() subroutines is easier than
customizing other parts of the code, however, often what you need is not
achievable with the DcCustomOnXXXCode() subroutines. Regardless of
where you implement your customizations, remember that if you ever upgrade

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 2 – Getting Started with Applications and Components

61

your Documentum Desktop, you will need to re-implement your customizations,
so make them easy to identify in your source code.

Table 2.1 - Customizable Subroutines in Documentum Desktop Components

Subroutine Name Description
DcCustomOnLoadingCode() This subroutine is automatically called at

the end of the Form_Load()
subroutine. You can use it to implement
custom initialization you want the
component to have before it is displayed.

DcCustomOnSavingCode() This subroutine is automatically called
whenever form data is saved. You can
use it to implement specialized save
routines.

DcCustomOnUnloadingCode() This subroutine is automatically called
by the Form_Unload() event handler
before the form is unloaded. You can
use it to implement any post-processing
necessitated by your customizations.

The procedure for modifying existing Documentum Desktop components is
generally the same as for creating a new component. However, instead of starting
with a new Visual Basic project, we will copy an existing one.

1. Copy the component’s folder containing all of its Visual Basic files to a
new location.

2. Double-click the component’s project file (.vbp) to start Visual Basic.
3. Choose Save Project As from the File menu to save the project with a

new name.
4. Choose Properties from the Project menu.
5. On the General tab, change the name of the project.
6. On the Application tab, change the title of the application.
7. On the Component tab, select the No Compatibility radio button.

Selecting No Compatibility will break this component’s binary
compatibility with its former project and force Visual Basic to generate a
new COM Id. Breaking binary compatibility ensures that this component
will not overwrite the original. In addition, breaking binary compatibility

Chapter 2 – Getting Started with Applications and Components

62

and generating a new COM Id ensures that this component will only apply
to the object types to which you attach it.

8. Click OK to save the project properties.
9. Choose Replace from the Edit menu. Enter the old project name in the

Find What field and the new project name in the Replace With field.
Also, select Current Project in the Search frame. Click OK and replace
all occurrences of the old project name with your new project name.

10. Choose Save from the File menu.
11. If you broke binary compatibility in step 7, you should now compile your

component, and then reset its binary compatibility. See steps 21 – 28 in
Section 2.2.2, Setting up a Component Project, earlier in this chapter.

You are now ready to modify the component. Whether you choose to totally
customize the inner workings of the component or stick to using the
DcCustomOnXXXCode() subroutines, it doesn’t matter. From here on, it’s all
the same: code, compile, test, and deploy.

2.5 Troubleshooting Component Delivery
Debugging and troubleshooting failed component delivery can be very frustrating.
Improvements to the Documentum Desktop and Microsoft Windows have
alleviated many of the earlier problems associated with the delivery of COM
objects to clients. If you are encountering a problem with component delivery,
here are a few things to try.

1. Reboot your workstation. This often knocks things loose.
2. Reboot the Content Server®. This, too, often knocks things loose.
3. Remove the component from the %Windows%\Downloaded

Program Files directory on your workstation. To do this, locate the
component in Windows Explorer, right-click on the component and
choose Remove.

4. Review your Package & Deployment Wizard script and ensure that the
File Source for all files is marked as Include in this cab and not
Download from Microsoft Web site or Download from alternate Web
site. Some files default to Download from Microsoft Web site which,
depending upon your networking environment, can be unreachable. I have
found that components fail without indication when this occurs.

Chapter 2 – Getting Started with Applications and Components

63

5. See Documentum's publication, Frequently Asked Questions for
Deploying, Downloading and Creating Documentum Desktop Client
Components.

6. See Documentum Tech Support Note #14740. This support note is the
consolidation of four support notes regarding deployment of Desktop
components.

7. See Microsoft Knowledgebase article #Q252937. This article discusses
why code download fails and offers some suggestions and tools to trace
the download process.

2.6 Chapter Summary
This chapter provided an overview of the process for creating Documentum
applications, both standalone and components. The two types of applications are
similar, though implemented differently. For example, they both use a similar
routine to launch themselves; however, standalone applications are easier to
debug than components.

In addition to the basic structure of standalone and component applications, this
chapter also discussed techniques for testing them using test harnesses. There are
two types of test harnesses: Visual Basic test harnesses which involve creating a
project group and direct instantiation of the component; and the DocApp
approach which leverages DART to instantiate the component. Both methods
have advantages and disadvantages, which method you use is up to you.

This chapter also discussed making modifications to the Documentum Desktop
menu system using the Menu System Designer Tool. It discussed how to add
three types of applications to the menu system: global, type-specific, and
executable.

The chapter concluded with a brief overview of the process for modifying
Documentum's stock Desktop components. Although you are free to completely
rewrite any Desktop component, Documentum has provided hooks in their source
code to accommodate quick and easy modifications.

This chapter provided a foundation and framework on which the rest of the
techniques in this book can be implemented. In the remaining chapters of this

Chapter 2 – Getting Started with Applications and Components

64

book, I discuss specific techniques and approaches for solving problems, and will
no longer discuss the infrastructure of the application. The following chapters'
code snippets will be short (relatively), and context-less, meaning that certain
variables will be assumed (e.g., IDfSession, IDfClient, and IDfClientX), and no
further mention of the application or component framework will be made.

Chapter 3 – Working With Queries and Collections

65

3
3 Working With Queries And

Collections
Now that you have an understanding of the application and component
framework, this chapter will begin your exploration of what happens inside the
application. This chapter covers four related topics:

• Techniques for querying the Docbase,
• Different types of queries,
• Methods for processing collections,
• Common, useful queries.

Queries ask questions of the Docbase, which responds with a collection of
answers. Queries and collections are one of the basic constructs in a
Documentum application, and you don't have one without the other.

You will learn that there are several techniques to query the Docbase and several
different types of queries. Each query technique and query type serves a different
purpose and each has a time for use. You will also learn several techniques for

Chapter 3 – Working With Queries and Collections

66

processing collections and common pitfalls to avoid. The last part of this chapter
presents an assortment of common, useful queries for your use.

3.1 How To Query The Docbase
I will present three ways to programmatically query the Docbase in this section:

• Using the Run Query (IDcRunQuery) interface of the DcFindTarget class,
• Using the Query Manager (IDfQueryMgr) class,
• Using the query (IDfQuery) class.

Each of these techniques has advantages and disadvantages. The Run Query is
extremely simple to implement and leverages the Documentum Desktop to
process the query and display the results. However, it is restricted to only running
SELECT queries.

The Query Manager is a high-level DFC class that lets you build queries by
setting properties of the class. The Query Manager is a powerful class that can,
among other things, query multiple Docbases simultaneously and aggregate the
results. However, the Query Manager doesn't handle complex queries well and
provides no functionality for processing the results of the query.

Using the IDfQuery class is the most common approach to querying. With it, you
can meet all your querying needs. However, it also requires the most work to
implement.

Each of these techniques is examined in detail in the following sections.

3.1.1 Using Run Query

A simple way to programmatically query the Docbase is to use the Run Query
interface (IDcRunQuery) of the DcFindTarget class. This is essentially the same
interface used by the Query screen of the Documentum Desktop. As the
following code snippet demonstrates, all that is required to execute a query is to
instantiate an IDcRunQuery object and call the RunQuery() method while

Chapter 3 – Working With Queries and Collections

67

passing it a Docbase name and query string. Your project must reference the
Documentum Find Target Server 1.0 Type Library to use this code.

Source Code A working example of this source code can be found in the "Chapter3/Run
Query" directory of the source code archive.

Dim findTargetObj As New DcFindTargetObj
Dim runQueryObj As IDcRunQuery

Set runQueryObj = findTargetObj
runQueryObj.RunQuery "Docbase", "select * from dm_document " _
 & "where folder('/Temp')"

The DcFindTarget class takes care of logging into the Docbase, parsing the query
string, running the query, and displaying the results. The results are displayed in
a Documentum Desktop window, and can be manipulated (see Figure 3.1). That's
a lot of functionality for four lines of code. However, this technique takes a lot
for granted and probably doesn't meet your needs as an application developer. It
is also restricted to only executing simple SELECT queries; you cannot issue a
query that results in a change to the Docbase (e.g., you cannot use ALTER or
UPDATE DQL commands).

Figure 3.1 – Run Query Results

Chapter 3 – Working With Queries and Collections

68

3.1.2 Using The Query Manager

The Query Manager (IDfQueryMgr) is a high-level DFC class that provides better
control for the construction and execution of queries than IDcRunQuery. This
class is well suited for building queries from data entered on forms since each
element of the query is added to the class before it is executed. It also has the
ability to save queries as SmartLists and to query multiple Docbases
simultaneously and aggregate the results.

The following code snippet demonstrates a simple use of the Query Manger.
Query Manager queries are built one property at a time. First, the SELECT
variables are added to the class and given order and display characteristics. Next,
the object types are added. Finally, the WHERE clause is built with all of its
variables and conditions. The query is then executed in an asynchronous fashion.

Source Code A working example of this source code can be found in the
"Chapter3/Query Manager" directory of the source code archive.

Dim qMgr As IDfQueryMgr
Dim a1 As IDfAttrLine
Dim l1 As IDfQueryLocation
Dim r1 As IDfQueryResultItem
Dim strTmp As String
Dim i As Integer
Dim j As Integer
Dim sobj As IDfSysObject
Dim tObj As IDfTypedObject

' DQL: select object_name, r_object_id from dm_document where
' owner_name = 'dmadmin' and folder('/Temp') order by
' object_name

' init
Set qMgr = cx.getQueryMgr
qMgr.Initialize session

' set up SELECT
qMgr.insertDisplayAttr -1, "object_name", 20
qMgr.insertDisplayAttr -1, "r_object_id", 20

' set up FROM
qMgr.setObjectType ("dm_document")

Chapter 3 – Working With Queries and Collections

69

' setup WHERE
Set a1 = qMgr.insertAttrLine(0, -1, 0)
a1.SetAttr ("owner_name")
a1.setValue ("dmadmin")
a1.setRelationalOp (1)
a1.setLogicOp ("AND")

Set l1 = qMgr.insertLocation(-1)
l1.setPath "/Temp"
l1.setDescend False

' setup ORDER BY
qMgr.insertSortAttr -1, "object_name", True

' execute
qMgr.startSearch

While (Not qMgr.isSearchFinished)
 sleep (1)
Wend

' get results
strTmp = "DQL: " & qMgr.getDQL & vbCrLf & vbCrLf
strTmp = strTmp & qMgr.getResultItemCount & " " _
 & qMgr.getObjectType & "(s) found." & vbCrLf & vbCrLf

' get columns
For i = 0 To qMgr.getDisplayAttrCount - 1
 strTmp = strTmp & qMgr.getDisplayAttr(i) & vbTab
Next i
strTmp = strTmp & vbCrLf & vbCrLf

' process results
For i = 0 To qMgr.getResultItemCount - 1
 Set r1 = qMgr.getResultItem(i)
 Set tObj = r1.getTypedObject

 For j = 0 To qMgr.getDisplayAttrCount - 1
 strTmp = strTmp & tObj.getString(qMgr.getDisplayAttr(j)) _
 & vbTab
 Next j
 strTmp = strTmp & vbCrLf
Next i

' show results
MsgBox strTmp, vbInformation, "Results"

Chapter 3 – Working With Queries and Collections

70

As you can see, querying using the IDfQueryMgr is simply a matter of assigning
values to the IDfQueryMgr's property fields. This is why it works well behind a
form. In this example the full query was:

select object_name, r_object_id from dm_document where
 owner_name = 'dmadmin' and folder('/Temp') order by
 object_name;

The code first initializes the Query Manager object with a valid session and then
adds the two attributes to search on, object_name and r_object_id, using
the insertDisplayAttr() method. This method requires three arguments:
the placement of the attribute (-1 is the beginning of the list); the name of the
attribute; and the width of the display column. The width of the display column
attribute only comes into play when you save the query as a Smart List, since the
Query Manager class has no display capabilities. The object type is set using
setObjectType() and then the WHERE clause is built by adding IDfAttrLine
objects. IDfAttrLine objects encapsulate WHERE clause variables and describe
the conditions they must meet, as well as their relation to each other. Lastly, a
search path is added to the Query Manager object using an IDfQueryLocation
object, and a sort order is added using the insertSortAttr() method.

Of particular interest is the use of the While loop and the sleep()function*.
The IDfQueryMgr.execute() method runs the query asynchronously and
returns immediately. Therefore, you must continually poll the Query Manager to
determine if the query has completed. The reason the Query Manager operates in
this manner is so it can execute multi-Docbase queries. Naturally, some of these
queries will take longer to complete than others. Therefore, instead of blocking
the application thread waiting for a remote query to complete, the queries are
executed asynchronously and application control is returned immediately.

This code snippet also includes some code to process the results returned by the
Query Manger. The logic is similar to processing a two-dimensional array where
i enumerates the rows and j enumerates the columns (see Figure 3.2). I included
this code primarily to highlight the difference between accessing the Query
Manager’s results, and accessing an IDfCollection, which will be examined later
in this chapter.

* The sleep() function is discussed in Chapter 5, Proven Solutions for Common Tasks.

Chapter 3 – Working With Queries and Collections

71

Figure 3.2 – Query Manager Results

One of the stated benefits to using the Query Manager class is that it can save its
query as a Smart List (dm_smart_list). In a sense, this is really the class'
display and results processing mechanism, since a Smart List can be opened and
its query results viewed in the Documentum Desktop. Saving the query as a
Smart List is accomplished with a simple call to the save() method of the
Query Manager object. Interestingly, the save() method saves the Smart List
on your hard drive, not in the Docbase as you would expect. I don't often have a
reason to save a query to a user's hard drive, so when I need to save a query, I
save it as a Query object (dm_query) in the Docbase. Like a Smart List,
doubling-clicking the Query object in the Documentum Desktop executes the
query and displays the results in a Documentum Desktop window. Unlike a
Smart List, a Query object cannot be opened or edited with the Documentum
Desktop Find component.

The code snippet on the following pages illustrates the use of the save()
method as well as how to save the query in the Docbase as a dm_query object. I
duplicated the previous snippet here to provide context, and highlighted the added
lines with bold typeface.

Chapter 3 – Working With Queries and Collections

72

Source Code A working example of this source code can be found in the
"Chapter3/Query Manager" directory of the source code archive.

Dim qMgr As IDfQueryMgr
Dim a1 As IDfAttrLine
Dim l1 As IDfQueryLocation
Dim r1 As IDfQueryResultItem
Dim strTmp As String
Dim i As Integer
Dim j As Integer
Dim sobj As IDfSysObject
Dim tObj As IDfTypedObject

' DQL: select object_name, r_object_id from dm_document where
' owner_name = 'dmadmin' and folder('/Temp') order by
' object_name

' init
Set qMgr = cx.getQueryMgr
qMgr.Initialize session

' set up SELECT
qMgr.insertDisplayAttr -1, "object_name", 20
qMgr.insertDisplayAttr -1, "r_object_id", 20

' set up FROM
qMgr.setObjectType ("dm_document")

' setup WHERE
Set a1 = qMgr.insertAttrLine(0, -1, 0)
a1.SetAttr ("owner_name")
a1.setValue ("dmadmin")
a1.setRelationalOp (1)
a1.setLogicOp ("AND")

Set l1 = qMgr.insertLocation(-1)
l1.setPath "/Temp"
l1.setDescend False

' setup ORDER BY
qMgr.insertSortAttr -1, "object_name", True

' execute
qMgr.startSearch

While (Not qMgr.isSearchFinished)

Chapter 3 – Working With Queries and Collections

73

 sleep (1)
Wend

' save as smartlist
If (Not qMgr.save("C:\Temp\qMgr.smartlist")) Then
 MsgBox "Error Saving SmartList.", vbCritical, "Error"
End If

'save as query
Set sObj = session.newObject("dm_query")
sObj.setContentType ("crtext")
sObj.setContent cx.StringToByteArrayOutputStream (qMgr.getDQL)
sObj.setObjectName "Test Query"
sObj.link "/Temp"
sObj.save

Set qMgr = Nothing

After running this code, you should find a file named qMgr.smartlist in the
C:\Temp directory on your hard drive, and an object named Test Query in
the /Temp cabinet in the Docbase. The dm_query object can be checked out
and edited, or double-clicked and executed in the Documentum Desktop.

Again, the Query Manager is a good choice for constructing a query from a user
interface (UI) since it is relatively easy to map UI field values into the properties
of the Query Manager object. UI-controlled queries are less likely to use
“SELECT *”, wild cards, and joins, which the Query Manager doesn't handle
well. The Query Manager is also well suited for enterprise-level, multi-Docbase
searches.

A few disadvantages of using the Query Manager are: it doesn't handle complex
queries well (e.g., "SELECT *", joins, or sub-queries), it doesn't provide any
result processing capabilities, and there is a resource cost for using it. The
resource cost is, of course, only temporary while the object is instantiated and
running, but it can be high and should be considered if performance is an issue.

For more information regarding the use of the Query Manager or any of its
properties or methods, see the Documentum Foundation Classes API
Specification.

Chapter 3 – Working With Queries and Collections

74

3.1.3 Using The IDfQuery Class

As useful as the Query Manager is, its overhead and shortcomings do not make it
the best class for general-purpose queries. For the best control and most
flexibility when querying, use the IDfQuery class. The IDfQuery class is the
basic query class in the DFC, and is the most common class used for querying. It
is well designed and simple, but does require more work on your part, as the
following code snippet illustrates.

Source Code A working example of this source code can be found in the
"Chapter3/Query Class" directory of the source code archive.

Dim query As IDfQuery
Dim col As IDfCollection

Set query = cx.getQuery
query.setDQL ("select r_object_id, object_name, r_object_type" _
 & " from dm_document where FOLDER('/Temp')")
Set col = query.execute(session, DF_READ_QUERY)

' process the results returned in the collection object here

col.Close

The IDfQuery object is instantiated using the object factory in the DfClientX
object (represented here by the cx variable). The setDQL() method is used to
pass the DQL query string to the object. The object does not validate the DQL,
you must ensure the DQL is valid. The execute() method is called to run the
query. There are three important things to note about the execute() method:

• It returns an IDfCollection object (processing of collection objects is
discussed later in this chapter).

• The first parameter is an IDfSession object.
• The second parameter is a constant indicating the type of query to

perform. The constant values and their affects are listed in Table 3.1.

As this example illustrates, the IDfQuery object is simple to use. The query runs
synchronously within the application thread and the results are returned in an
IDfCollection object for processing. The down side to this technique is that it
requires more coding on your part: you have to write code to validate and assign

Chapter 3 – Working With Queries and Collections

75

the DQL string; you have to write code to process and display the results; and you
have to write code to trap errors. As you will see later in this chapter, these things
are simple to implement, and this process is probably closer to what you expect as
a developer.

Table 3.1 - Query Type Constants

Constant Name Value Affect
DF_READ_QUERY 0 A read query does not allow changes to

be made to the Docbase by the DQL
statement (e.g., you cannot use ALTER
or UPDATE). Think of it as a read-only
query.

DF_QUERY 1 This is a general-purpose query. This
type must be used if the DQL statement
makes a change to the Docbase (e.g.,
you use ALTER or UPDATE).

DF_CACHE_QUERY 2 A cached query stores its results in the
client's local cache for later reuse.
Cached queries can improve
performance, but also have the potential
for returning stale data. Cached queries
are discussed later in this chapter.

DF_EXEC_QUERY 3 The execute query is the same as the
DF_QUERY constant except it is used
for queries whose syntax exceeds 256
characters.

DF_EXECREAD_QUERY 4 The execute read query is the same as
the DF_READ_QUERY constant except
it is used for queries whose syntax
exceeds 256 characters.

DF_APPLY 5 The apply query is a special type of
query that invokes system administration
functions or runs external procedures.
See the Documentum Content Server
Administrator's Guide for more
information.

Chapter 3 – Working With Queries and Collections

76

3.2 Types Of Queries
This section discusses and gives examples of three types of queries that are other
than the basic DQL-variety. These types are: SQL pass-through queries, cached
queries, and full-text queries. SQL pass-through queries are queries that affect the
underlying RDBMS and are not concerned with Documentum objects. Cached
queries are queries whose results are stored locally, and can be quickly retrieved
without having to access the Documentum Server. These queries are very useful
for populating user controls on a UI. Full-text queries are queries that utilize the
full-text index to retrieve objects that contain certain words, or whose content
matches certain linguistic constructs.

3.2.1 SQL Pass-Through Queries

A SQL pass-through query is a query targeted at the underlying RDBMS, and not
Documentum. To execute a SQL pass-through query, use the DQL EXECUTE
statement with the exec_sql method. EXECUTE is the DQL equivalent of the
Documentum API apply() method. The format of an EXECUTE query is:

EXECUTE exec_sql WITH query = 'sql_query'

where sql_query is the actual pass-through SQL query string.

A common use for SQL pass-through queries is to programmatically CREATE,
DROP, UPDATE, and INSERT tables in the RDBMS schema. Usually, creating,
dropping, and manipulating RDBMS tables in this manner is achieved via a script
or other RDBMS interface, and not an application. The following example drops,
and then creates a table named USSTATES with two columns: STATE_NAME
and STATE_ABBR, and inserts a row for the state of Virginia.

execute exec_sql with query = 'drop table usstates'
go
execute exec_sql with query = 'create table usstates
 (state_name varchar2(25), state_abbr varchar2(2))'
go
execute exec_sql with query = 'insert into usstates
 (state_name, state_abbr) values (''Virginia'',''VA'')'
go

Chapter 3 – Working With Queries and Collections

77

execute exec_sql with query = 'commit'
go

This example can be run from idql32.exe, Documentum's interactive DQL
editor*.

Here is the same process in Visual Basic using the DFC.

Source Code A working example of this source code can be found in the "Chapter3/SQL
PassThrough" directory of the source code archive.

Dim q As IDfQuery
Dim col As IDfCollection
Dim msg As String

Set q = cx.getQuery

' drop table if it already exists
q.setDQL ("execute exec_sql with query = 'drop table usstates'")
Set col = q.execute(session, DF_QUERY)
msg = session.getMessage(3)
If (msg <> "") Then
 MsgBox "Drop: " & msg
End If
col.Close

' (re) create table
q.setDQL ("execute exec_sql with query = 'create table " _
 & "usstates (state_name varchar2(25), state_abbr " _
 & "varchar2(2))'")
Set col = q.execute(session, DF_QUERY)
msg = session.getMessage(3)
If (msg <> "") Then
 MsgBox "Create: " & msg
End If
col.Close

' insert row
q.setDQL ("execute exec_sql with query = 'insert into usstates" _
 & " (state_name, state_abbr) values " _
 & (''Virginia'',''VA'')'")
Set col = q.execute(session, DF_QUERY)
msg = session.getMessage(3)

* See Chapter 7, Tips, Tools and Handy Information, for more information regarding the idql32.exe utility.

Chapter 3 – Working With Queries and Collections

78

If (msg <> "") Then
 MsgBox "Insert: " & msg
End If
col.Close

The length of this code snippet compared to the script example illustrates one of
the advantages of doing this type of query in a script environment. Another
advantage to the script environment is the built-in error handling of
idql32.exe. The EXECUTE statement returns a collection with only one
column, result, that holds an integer indicating the result of executing the
statement, not the result of the query. This is not very useful for error trapping. A
better technique is to access the getMessage() method of the IDfSession
object and check its length. If its length is greater than zero, an error occurred and
can be trapped. This code snippet simply displays the error message in a message
box.

There are many other uses for the EXECUTE statement. See the Documentum
Content Server DQL Reference Manual for more information.

3.2.2 Cached Queries

Cached queries are the same as other queries in form and structure, but different
in execution. When the query engine receives a request for a cached query, it first
looks in the local query cache to determine if the same query has previously been
saved. If it has, and it’s still valid*, the query results are returned from the local
query cache and the actual query is never executed on the server. This results in a
much faster response for the user. If the query does not exist in the local query
cache (or it is deemed to be invalid), the query engine executes the query on the
Documentum Server and saves the results in the local query cache for the next
time they are needed.

Cached queries are most useful with data that is fairly static in nature. Since the
queries stored in the local query cache are not continually updated, the risk of
them growing stale and out of synch with the Docbase is real. For this reason,
cached queries should only be used for queries whose results do not change

* The period of time a cached query remains valid and the criteria used to make that determination can be adjusted by
changing the effective_date attribute on the Docbase config object. The validity of the query cache is determined
when the user logs in.

Chapter 3 – Working With Queries and Collections

79

frequently. For example, a good candidate for a cached query would be one that
retrieves the names and postal abbreviations for the 50 United States from a
registered table. It is not likely that this query will grow stale over the course of a
day or even weeks.

You will frequently see cached queries used for populating UI controls. The
queries might be executed when the user logs into the application, and cached for
the duration of the user’s session. Using cached queries to populate fairly static
data in UI controls can increase performance dramatically, especially if you have
a complex UI with many query-driven controls.

To execute a cached query, simply use the DF_CACHE_QUERY type constant
with the IDfQuery.execute() method:

Set collection = query.execute(session, DF_CACHE_QUERY)

The local query cache is usually:

c:\documentum\dmcl\qrycache\<server name>\<docbase id>\<user
name>\

The query cache map (cache.map) and result files are plain text files and can be
examined with a text editor. You should not manipulate query cache result files
directly. Always use the IDfQuery.execute() method with the
DF_CACHE_QUERY type constant to manipulate cached queries and their result
files.

You can flush the query cache programmatically using the
IDfSession.flushCache() method. You may want your application to do
this when it starts to ensure all of its cached queries are current.

3.2.2.1 Cached Query Configuration

To use cached queries you must make two configuration changes to your
environment, one on your client, and one on the server.

• On the client computer, add the line:

Chapter 3 – Working With Queries and Collections

80

cache_queries = T

to the [DMAPI_CONFIGURATION] section of your dmcl.ini file.
The dmcl.ini file is usually found in your C:\Windows directory.
For example, your dmcl.ini file might look like this:

[DOCBROKER_PRIMARY]
host = 192.168.0.1

[DMAPI_CONFIGURATION]
cache_queries = T

• On the server, you will need to set the effective_date attribute of the

Docbase config object to a valid date. By default, this attribute is set to
NULLDATE, which disables query caching. The server uses the value of
the effective_date attribute to determine if the client query cache is
valid or needs to be flushed. If the date of the query cache files and the
value of the effective_date attribute are the same, or the value of the
effective_date is greater than the current system time, the cache is
deemed valid. Otherwise, the cache is deemed invalid and flushed. Use
the Documentum Administrator to update the effective_date
attribute of the Docbase config object.

If you make changes to data you know is cached by clients (e.g., values used by a
UI control), you can change the effective_date attribute and invalidate
everyone's cache. Doing so will cause the clients to reload the data from the
Documentum Server.

3.2.2.2 Cached Query Example

The following code snippet illustrates the use of a cached query and the
performance improvement it provides. It uses the Win32 API method
GetTickCount() to compare the execution times of two queries.

Chapter 3 – Working With Queries and Collections

81

Source Code A working example of this source code can be found in the
"Chapter3/Cached Query" directory of the source code archive.

' Win32 API declaration
Private Declare Function GetTickCount Lib "kernel32" () As Long

Dim q As IDfQuery
Dim col As IDfCollection
Dim startTime As Long

' flush the cache to make sure this query isn't there
session.flush "querycache"

' first query is not found in cache
Set q = cx.getQuery
q.setDQL ("select * from dm_user")
startTime = GetTickCount
Set col = q.execute(session, DF_CACHE_QUERY)
MsgBox "Elapsed time = " & GetTickCount() - startTime, _
 vbInformation, "Initial Query"
col.Close
Set col = Nothing

' second query is in cache
q.setDQL ("select * from dm_user")
startTime = GetTickCount
Set col = q.execute(session, DF_CACHE_QUERY)
MsgBox "Elapsed time = " & GetTickCount() - startTime, _
 vbInformation, "Cached Query"
col.Close

This snippet queries for all of the user objects in the Docbase. This is a good
cached query since it is unlikely that the number of user objects in the Docbase
will change during the lifetime of your session. When I run this snippet, the first
message box reports a duration of 42 milliseconds* for the execution of the first
query. The second message box reports 3 milliseconds to retrieve the query
results from the cache–a 93% improvement in performance.

This example makes the utility of cached queries obvious. However, be aware of
the data being cached, and the risk should it fall out of synch with the Docbase.

* Your execution times will probably be different from mine; however, the point should hold: cached queries are much
faster.

Chapter 3 – Working With Queries and Collections

82

3.2.3 Full-Text Queries

Up to this point, I have discussed queries that retrieve objects from the Docbase
based upon the values of discrete attributes (e.g., object_name), or some
relationship among these attributes. Full-text queries allow you to search for
words, phrases, values, and word relationships in the content of objects. A full-
text search is akin to using an Internet search engine to locate a word or phrase on
the Internet. In Documentum, this capability is provided by an embedded
Verity®, Inc. full-text search engine. The Verity engine is distributed and fully
integrated with the Documentum Server. This integration allows you to execute
very effective full-text searches on your Docbase without leaving the
Documentum environment. In fact, for queries involving large numbers of
objects and massive table scans, full-text searching is often more efficient than
DQL. However, sheer volume alone doesn't always make full-text searches more
attractive. The use of some DQL predicate functions (e.g., LOWER()), or
wildcard characters in search strings (e.g., %book%), will disable RDBMS
indexes and force Documentum to execute slow table scans. Both of these
situations can be overcome by using full-text searching.

Documentum full-text queries come in two flavors: document searches, and
TOPIC® searches. Document searches follow a more traditional DQL format in
which the clause SEARCH DOCUMENT CONTAINS is appended to or replaces
the WHERE clause in the query. For example:

select * from dm_document search document contains 'Union'
 where any author = 'Madison';

TOPIC searches utilize the advanced features of the Verity search engine and the
Verity Query Language (VQL) and have a syntax or their own. They are
implemented with the SEARCH TOPIC clause, which can also be appended to or
replace the WHERE clause. For example:

select * from dm_document search topic '<word> Union'
 where any author = 'Madison';

VQL provides modifiers and operators for creating full-text queries that can
handle non-discrete data, fielded data, and word relationships. In addition, the
Verity search engine installs and uses KeyView® format filters so it can read and

Chapter 3 – Working With Queries and Collections

83

index the most common file formats. A list of these formats can be found in
Chapter 7, Tips, Tools and Handy Information.

As useful as full-text searches are, they do have some drawbacks. One is that
objects in the Docbase that do not have any content (e.g., folders), are not full-text
indexed. Therefore, to find content-less objects, you must use traditional DQL.
Another problem is not all of the DQL predicate functions have equivalents in
VQL (e.g., FOLDER()). Therefore, to search a folder structure, you must append
a DQL WHERE clause to your full-text search. Finally, there is a lag between
when an object's content enters the Docbase and when it is available in the full-
text index. This lag is governed by the frequency with which the
dm_FulltextMgr job runs. Therefore, documents are not always immediately
available in the full-text index.

3.2.3.1 Full-Text Configuration

Before full-text searching will work, you must create full-text indexes on the
Documentum Server, and then indicate which objects to include in the index. To
create full-text indexes, and keep them up-to-date, schedule and run the
dm_FulltextMgr job using the Documentum Administrator. This job also
automatically updates the full-text index as objects are add, deleted, and updated
in the Docbase. The more frequently this job runs, the more quickly content is
available in the full-text index. However, too frequent of execution of this job can
impair performance.

To indicate that an object should be included in the full-text index, set its
a_full_text attribute to true. You can accomplish this in many ways: at
checkin when using the Documentum Desktop, by writing a custom checkin
procedure that sets it, or by running a DQL query*.

3.2.3.2 Document Searches

Document searches are simple, almost brute-force style full-text searches. A
document search uses the SEARCH DOCUMENT CONTAINS clause instead of or

* This query and several others relating to full-text searching are discussed in the Section 3.3, Useful Queries.

Chapter 3 – Working With Queries and Collections

84

in addition to the standard WHERE clause in its DQL. The general format of a
document search DQL statement follows:

select * from dm_document search document contains
 'search_word';

where search_word is the word you are searching for. Notice that this is a
search word, and not a phrase. White spaces are not supported. You can search
for several words as long as you relate them with a Boolean operator, as in:

select * from dm_document search document contains
 'search_word' AND 'another_search_word';

Document searches do not support wildcards, phrases, or any sort of linguistic
relationship between words (e.g., words near each other). You cannot search for
a particular attribute/value pair using a document search alone. However, you can
combine SEARCH DOCUMENT CONTAINS clauses and WHERE clauses to
achieve this type of search. For example:

select * from dm_document search document contains
 'search_word' AND 'another_search_word' where
 attribute_name = 'value';

If you want to perform full-text searches that can implement wildcards, phrases,
and linguistic relationships, you need to use TOPIC searches.

3.2.3.3 TOPIC Searches

TOPIC searches utilize VQL to create robust and comprehensive full-text
searches. TOPIC searches append or replace the DQL WHERE clause with a
SEARCH TOPIC clause. The general format is:

select * from dm_document search topic 'Vertiy syntax here'
 where atribute_name = 'value';

Notice the Verity syntax is enclosed in single quotes (''). In the examples that
follow, you will also notice that operators and modifiers are enclosed in angle
brackets (<>).

Chapter 3 – Working With Queries and Collections

85

The Verity syntax used in DQL is comprised of a combination of operators and
modifiers. These operators and modifiers are used to construct DQL predicates
that define the qualifications that objects must meet for retrieval. There are four
categories of operators:

• Evidence operators,
• Relational operators,
• Concept operators,
• Proximity operators.

Each of these categories and their operators are discussed next.

3.2.3.3.1 Evidence Operators

Evidence operators expand your search criteria by adding fuzziness to your search
terms. Fuzziness is generated by automatically including related or similar words
to the search, thereby expanding the possible result set. Table 3.2 summarizes the
Verity evidence operators.

Table 3.2 - Verity Evidence Operators

Operator Description
SOUNDEX Expands the search to include words that sound like or have

a similar letter pattern as your search term. This expansion
is done using the Soundex algorithm.

Example: select * from dm_document search topic
 '<soundex> white'

Returns objects containing "wait", "weed", "wheat", or
"wood". These words all have the same Soundex value,
W300.

Chapter 3 – Working With Queries and Collections

86

Operator Description
STEM Expands the search to include words that have the same

linguistic stem as the search term.

Example: select * from dm_document search topic
 '<stem> train'

Returns objects containing "train", "trains", "trained", or
"training".

THESAURUS Expands the search to include synonyms for the search term
as defined in the Verity thesaurus.

Example: select * from dm_document search topic
 '<thesaurus> staff'

Returns objects also containing "stick", "cane", or "rod".

TYPO/N Expands the search to include words that have N letters
different from the search term, thus emulating a typo.

Example: select * from dm_document search topic
 '<typo/1> cat

Returns objects containing "hat", "rat", "sat", or "cot".

WILDCARD Allows the use of wildcard characters in the search term.

Example: select * from dm_document search topic
 '<wildcard> comp*'

Returns objects containing "compare", "compose", or
"computer".

WORD Performs an exact match (case insensitive) full-text word
search. This is the basic full-text search operator and is
analogous to the Documentum SEARCH DOCUMENT
CONTAINS-style full-text search.

Example: select * from dm_document search topic
 '<word> Documentum'

Returns objects containing the word "Documentum".

Chapter 3 – Working With Queries and Collections

87

3.2.3.3.2 Relational Operators

Relational operators allow you to search the values of fielded RDBMS data (i.e.,
object attributes) that have been included in the full-text index. Since
Documentum 4.2, all string attributes of dm_sysobjects (and subtypes) are
automatically included in the full-text index for all objects with content. Table
3.3 summarizes the Verity relational operators.

Table 3.3 - Verity Relational Operators

Operator Description
CONTAINS Performs a search using the attribute and the indicated value.

Example: select * from dm_document search topic
 'title <contains> Documentum'

Returns objects whose title attribute contain the word
"Documentum".

ENDS Performs similarly to the CONTAINS operator but only
matches on the ending of the value.

Example: select * from dm_document search topic
 'authors <ends> son'

Returns objects whose author attribute contains values
ending with "son", such as: "Gibson", "Morrison", and
"Stevenson".

MATCHES Performs an exact search using the attribute and the
indicated value.

Example: select * from dm_document search topic
 'title <matches> Documentum Content
 Server Administrators Guide'

Returns objects whose title attribute exactly match
"Documentum Content Server Administrators Guide".

Chapter 3 – Working With Queries and Collections

88

Operator Description
STARTS Performs similarly to the ENDS operator but matches on the

beginning of the values.

Example: select * from dm_document search topic
 'title <starts> Documentum'

Returns objects whose title attribute start with
"Documentum".

SUBSTRING Performs a substring search using the attribute and the
indicated value.

Example: select * from dm_document search topic
 'title <substring> guide

Returns objects whose title attribute contain the string
"guide".

=, >, >=, <
<=

These operators select objects whose attributes contain
values that are equal to (=), greater than (>), greater than or
equal to (>=), less than (<), less than or equal to (<=) the
indicated values.

Example: select * from dm_document search topic
 'r_creation_date >= 1/1/2002'

Returns objects whose r_creation_date values are
greater than or equal to "1/1/2002". Note that these
operators are not enclosed in angle brackets.

3.2.3.3.3 Concept Operators

Concept operators allow you to apply Boolean operators to search terms or other
operators. The Verity concept operators are summarized in Table 3.4.

Chapter 3 – Working With Queries and Collections

89

Table 3.4 - Verity Concept Operators

Operator Description
AND Selects objects that contain all of the search terms.

Example: select * from dm_document search topic
 'Documentum <and> Administrator'

Returns objects that contain the words "Documentum" and
"Administrator".

ACCRUE Functions similarly to the AND operation but ranks objects
who have more occurrences of the search terms higher in the
relevancy ranking.

Example: select * from dm_document search topic
 'Documentum <accrue> Administrator'

Returns objects that contain the words "Documentum" and
"Administrator" but ranks those that contain both words
higher.

OR Selects objects that contain at least one of the search terms.

Example: select * from dm_document search topic
 'Docbase Server <or> Content Server'

Returns objects that contain either the word "Docbase
Server", "Content Server", or both.

3.2.3.3.4 Proximity Operators

Verity's proximity operators allow you to write queries that describe how words
relate to each other in a grammatical construct, for example, a paragraph. The
Verity proximity operators are summarized in Table 3.5.

Chapter 3 – Working With Queries and Collections

90

Table 3.5 - Verity Proximity Operators

Operator Description
IN Searches document zones* for the search terms.

Example: select * from dm_document search topic
 'Documentum <in> summary'

Returns objects that have the word "Documentum" in their
summary zone.

WHEN Allows you to put conditions on a zone search.

Example: select * from dm_document search topic
 'Documentum <in> A <when> (href
 <contains> www.documentum.com)'

Returns objects that have the word "Documentum" in a zone
named "A" which also contains the string
"www.documentum.com" in an "href" attribute. For
example: <a href =
"http://www.documentum.com">
Documentum.

NEAR/N Selects objects that contain the search terms within N words
of each other.

Example: select * from dm_document search topic
 'Documentum <near/3> server'

Returns objects that contain the phrases: "Documentum
Content Server", and "…Documentum. The server …"

* Document zones are defined in custom Verity style files, and added to Documentum using
SETSTYLE_FTINDEX (an apply() method). For more information about custom style files, see The
Documentum Content Server Administrator's Guide.

Chapter 3 – Working With Queries and Collections

91

Operator Description
PARAGRAPH Selects objects that contain the search terms in the same

paragraph.

Example: select * from dm_document search topic
 'ship <paragraph> wreck'

Returns objects that have the words "ship" and "wreck" in
the same paragraph.

PHRASE Selects objects that contain the specified string.

Example: select * from dm_document search topic
 '<phrase> (Documentum Content Server
 Administrators Guide)'

Returns objects that contain the phrases: "Documentum
Content Server Administrators Guide".

SENTENCE Functions similarly to the PARAGRAPH operator but selects
objects that contain the search terms in the same sentence.

Example: select * from dm_document search topic
 'ship <sentence> wreck'

Returns objects with sentences that contain "ship" and
"wreck".

3.2.3.3.5 Modifiers

Modifiers change how the operators work, or how the query results are returned.
The Verity modifiers are summarized in Table 3.6.

Table 3.6 - Verity Modifiers

Operator Description
CASE Forces a case sensitive search. By default, searches are

performed in case insensitive mode.

Example: select * from dm_document search topic
 '<case> IT'

Chapter 3 – Working With Queries and Collections

92

Operator Description

Returns only objects containing "IT" and not "it" or "It".

MANY This modifier considers the density of the search terms in the
text when calculating the relevancy score. Typically, shorter
documents have greater density and produce higher relevancy
scores than long documents with the same number of
occurrences of the search terms.

Example: select * from dm_document search topic
 '<many> documentum'

Ranks objects with a higher occurrence of "Documentum",
higher in the relevancy score.

NOT Eliminates words from consideration when performing a
selection.

Example: select * from dm_document search topic
 'computer <and> Mac <and><not> IBM'

Returns objects containing "Macintosh computer" but not
"IBM computer".

ORDER Stipulates the order in which search terms must occur in the
text to constitute a match.

Example: select * from dm_document search topic
 '<order> <paragraph> (little, red,
 corvette)'

Returns only objects containing paragraphs with "little",
"red", and "corvette" in that order.

3.2.3.3.6 Other Verity Features

The Verity search engine has a number of other features worth mentioning. Some
of these are:

Chapter 3 – Working With Queries and Collections

93

• Thesaurus - The Verity search engine utilizes a thesaurus file on the
Documentum Server. This file allows users to search for word synonyms.
The thesaurus is located in
%DM_HOME%\verity\common\English\vdk20.syd.

• Stop Word File - Verity also utilizes a stop word file on the Documentum
Server when it generates its indexes. (Stop words are words like "a" and
"the" that are excluded from the index.) The stop word file is located in
%DM_HOME%\verity\common\English\dm_default.stp.

• Term Hit Highlighting - If Verity finds a search word in a document that
contains a PDF and PDFTEXT rendition, it will highlight the word in the
document when you view the rendition.

• Topics - Verity can utilize topic trees when conducting searches to return
a broader range of results. A topic tree is a hierarchical ontology of a
subject area, for example, the zoological phyla of animals. Topics differ
from synonyms in that topics are related and may have an implied
hierarchical relationship (e.g., microprocessors to computers), whereas
synonyms simply mean the same thing (e.g., sickness and illness). By
default, no topic trees exist on the Documentum Server. You can create
them using Verity's mktopic utility.

For details regarding these features, consult the Documentum and Verity
documentation.

The Verity full-text search engine adds additional power and ease to searching in
Documentum. Not only does it allow you to easily implement single-field
searches for attributes, but with the VQL extensions to DQL, you can also search
for text using very sophisticated and precise linguistic constructs.

3.2.3.4 Documentum Full-Text Search Keywords

Regardless of the flavor of full-text search you conduct (document search or
TOPIC search), there is a set of special DQL keywords you can use to return
additional information about your query results. These keywords are used as
SELECT variables and can be processed as such after the query. Four of the most
common keywords are described in Table 3.7. See the Documentum Content
Server DQL Reference Manual for more details and an explanation of the other
keywords.

Chapter 3 – Working With Queries and Collections

94

Table 3.7 - Full-Text Search Keywords

Keyword Description
HITS Returns an integer representing the total number of times the

search word or phrase matched in the document.

Example: select object_name, r_object_id, HITS
 from dm_document search document contains
 'Virginia'

SCORE Returns a number representing the relevance ranking for each
object. See Verity's documentation for a discussion of
scoring.

Example: select object_name, r_object_id, SCORE
 from dm_document search topic 'Virginia'

SUMMARY Returns a summary of each document matched by the query.
The summary consists of four sentences selected by the
Verity full-text search engine based upon its analysis of the
document. Note that the summary may be truncated
depending upon the total length of the sentences chosen, and
the maximum length of string variables defined by the
RDBMS.

Example: select object_name, r_object_id, SUMMARY
 from dm_document search document contains
 'Virginia'

TEXT Returns the actual words matched by a non-specific full-text
search criteria such as STEM or SOUNDEX.

Example: select object_name, r_object_id, TEXT
 from dm_document search topic
 '<stem> train'

Chapter 3 – Working With Queries and Collections

95

3.3 How To Process Collections
This section deals with processing collection objects. A collection object,
IDfCollection, contains the results of a query. It is often helpful to think of a
collection as a table with rows and columns. The columns represent the SELECT
variables requested in the DQL query, and the rows represent objects, which met
the query criteria. Processing a collection refers to retrieving the data from a
collection and doing something with it. This is one of the most basic and
common tasks you will implement as a Documentum developer. It is a simple
task, yet it does require care to avoid some pitfalls that can crash your application
or affect its performance. The following sections discuss some best practices for
processing collections.

3.3.1 Basic Collection Processing

The basic technique for processing a collection is simple, as the following code
snippet illustrates.

Source Code A working example of this source code can be found in the
"Chapter3/Collection" directory of the source code archive.

Dim q As IDfQuery
Dim col As IDfCollection

Set q = cx.getQuery

' do query
q.setDQL("select r_object_id, object_name, r_object_type from" _
 & " dm_document where owner_name = user")

Set col = q.execute(session, DF_READ_QUERY)

' process collection
While (col.Next = true)

 ' print each column for each row of collection . . .
 Debug.Print col.getString("r_object_id")
 Debug.Print col.getString("object_name")
 Debug.Print col.getString("r_object_type")

Wend

Chapter 3 – Working With Queries and Collections

96

col.Close

An IDfCollection object is returned by the query and processed in a While loop.
The process is propelled forward by the IDfCollection.Next() method
that advances the collection pointer to the next row. Inside the loop, you use the
getXXX() methods of the IDfCollection object to access individual values.

Always issue the IDfCollection.Close() method call as soon as you are
finished processing the collection–even in an error state (See Chapter 5, Proven
Solutions for Common Tasks). This seems like a simple thing–and it is–yet it is
often overlooked. Documentum allows only ten (10) simultaneous, open
collections per-session*. Ten seems like a lot, but depending upon what you are
doing, you can quickly exceed the need for ten simultaneous, open collections.
When this occurs, Documentum will refuse to open an eleventh and raise an
exception in your application. See Section 3.3.2, Tracing for Open Collections,
below for a technique to find open collections in your source code.

There are two pitfalls you should avoid when processing collections like this. The
first is using the IDfCollection.getTypedObject() method. This
method returns an entire row of the collection as an IDfTypedObject object.
Unless you specifically need the functionality an IDfTypedObject object provides
(e.g., persistence of the row after the collection has advanced), you are just
wasting time and resources. Instead, access each individual column of the row
using the IDfCollection.getXXX() methods.

The second pitfall to avoid is fetching an object from inside the collection-
processing loop. This can be detrimental to your application's performance and
should be avoided, if possible, even though it seems like a logical thing to do.
Instead, change the query to return the attributes you need and access them using
the IDfCollection.getXXX() methods.

These two pitfalls are illustrated below:

Dim q As IDfQuery
Dim col As IDfCollection
Dim tObj As IDfTypedObject
Dim pObj As IDfPersistentObject

* Actually, this number is configurable in the dmcl.ini file. However, the default is 10. See Chapter 7, Tips, Tools and
Handy Information, regarding the dmcl.ini file.

Chapter 3 – Working With Queries and Collections

97

Dim idObj As IDfId

Set q = cx.getQuery

' do query
q.setDQL("select * from dm_document where owner_name = user")

Set col = q.execute(session, DF_READ_QUERY)

' process collection
While (col.Next = true)

 ' !!! AVOID THIS UNLESS ABSOLUTELY NECESSARY !!!
 Set tObj = col.getTypedObject
 Debug.Print tObj.getString("r_object_id")

 ' get the object Id
 Set idObj = cx.getId(col.getString("r_object_id"))

 ' !!! AVOID THIS UNLESS ABSOLUTELY NECESSARY !!!
 Set pObj = session.GetObject(idObj)
 Debug.Print pObj.getObjectName

Wend
col.Close

The IDfSession.GetObject() method fetches the entire object from the
server to your workstation and is thus very expensive. If your only reason for
fetching the object is to retrieve its attributes, rewrite the query and the code
inside the processing loop to specifically get the attributes you want using
methods of the IDfCollection object. For example:

Dim q As IDfQuery
Dim col As IDfCollection
Dim idObj As IDfId

Set q = cx.getQuery

' do query
q.setDQL("select r_object_id,object_name from dm_document" _
 & " where owner_name = user")

Set col = q.execute(session, DF_READ_QUERY)

' process collection

Chapter 3 – Working With Queries and Collections

98

While (col.Next = true)

 ' get attrs
 Debug.Print col.getString("r_object_id")
 Debug.Print col.getString("object_name")

Wend
col.Close

Getting individual attributes from the Docbase is much less expensive than
fetching the entire object. However, sometimes it is unavoidable (and necessary)
to fetch objects from within a collection-processing loop. For example, if you
want to check them out for editing. In that case, a fetch is required. The rule of
thumb is: if you are only retrieving attributes, use one of the
IDfCollection.getXXX() methods. If you are manipulating the object,
you need to fetch it.

3.3.2 Tracing For Open Collections

So, you have an application with several dozen queries. After testing it for a
while you receive an error saying there are no more collections available.
Somewhere you didn't close a collection after processing it. But where?

One way to find the offending collection is to turn on client-side tracing and make
the application crash again. Chapter 5, Proven Solutions for Common Tasks,
discusses turning on client-side tracing in detail. Set the trace level to 11 when
trying to find open collections. Be aware that trace level 11 produces a lot of
output.

After the application crashes, review the trace log. The DFC will enter a
statement similar to the one below for each collection left open.

DFC DIAGNOSTIC - YOUR PROGRAM DID NOT CLOSE THIS DfCollection.
(QueryId=q0; DQL=select r_object_id, object_name, r_object_type
from dm_document where owner_name = user)

This statement gives you two clues to find the offending query:

• the query Id, which is equivalent to the collection Id, and

Chapter 3 – Working With Queries and Collections

99

• the offending query string.

By knowing the query Id and the query string, you should be able to track down
the offending query in your code and correct it.

3.3.3 Calculating The Size Of Collections

It is common practice to display the size of the result set (i.e., the number of rows
returned, or "hits") to a user after executing a query. Unfortunately, the
IDfCollection object does not contain an attribute or method to provide this
information. Here are two techniques to calculate the size of the result set. The
first is to simply increment a counter variable every time a row in the collection is
processed. The advantage to this technique is that you only have to execute the
query once. The drawback is that you don't know the size of the result set until
after it has been processed. The following code snippet demonstrates this idea.

Source Code A working example of this source code can be found in the
"Chapter3/Collection Size" directory of the source code archive.

Dim q As IDfQuery
Dim col As IDfCollection
Dim count As Integer
Dim dql As String

' query
Set q = cx.getQuery
q.setDQL("select r_object_id, object_name, r_object_type from " _
 & "dm_document where owner_name = user")
Set col = q.execute(session, DF_READ_QUERY)

' process collection
While (col.Next = true)

 ' process the collection . . .

 ' increment the counter
 count = count + 1

Wend
col.Close
Debug.Print "Results = " & count

Chapter 3 – Working With Queries and Collections

100

The second technique requires executing the query twice. To implement this
approach, first strip the SELECT clause out of the DQL statement, replace it with
COUNT(*), and execute the query. Obtain the value of COUNT(*) from the
collection, and then run the original query. The advantage to this technique is that
you know the size of the result set before you process it. The drawbacks are you
have to execute the query twice, and the COUNT(*) command can be expensive
resource-wise. The following code snippet demonstrates this technique.

Source Code A working example of this source code can be found in the
"Chapter3/Collection Size" directory of the source code archive.

Dim q As IDfQuery
Dim col As IDfCollection
Dim count As Integer
Dim dql As String
Dim i As Integer
Dim countDQL As String

Set q = cx.getQuery
dql = "select r_object_id, object_name, r_object_type from " _
 & "dm_document where owner_name = user"

' find the end of the select statement
i = InStr(1, LCase(dql), "from", vbTextCompare)

' build the countDQL query string
countDQL = "select count(*) " & Right(dql, Len(dql) - i + 1)

' do query to get count
q.setDQL (countDQL)
Set col = q.execute(session, DF_READ_QUERY)

' this collection only has one row so there is no need for a loop
col.Next
 count = col.getInt("count(*)") ' get the count
col.Close
Debug.Print "Results = " & count

' do query to get results
q.setDQL (dql)
Set col = q.execute(session, DF_READ_QUERY)

' this collection will hold the actual results of the query so
' a loop IS necessary

Chapter 3 – Working With Queries and Collections

101

While (col.Next = True)

 ' process the collection . . .

Wend
col.Close

Both of these techniques work well. Which one you use depends upon your
application and your needs. I tend to favor the second approach, because
knowing the size of the result set ahead of time gives you the ability to cancel the
query if the result set is too large. You will see an example of this in the sample
application in Chapter 8, Putting It All Together In A Sample Application.

3.3.4 Recursive Processing Of Collections

Occasionally, it is necessary to do recursive or nested collection processing. For
example, when you need to traverse a folder structure or gather workflow
statistics. Both of these processes require using the results of one query to drive a
nested query. Processing the resulting collections can be very tricky and require
great attention to collection management. This section presents a technique to
recursively process collections without breaking the ten collections-per-session
limit.

The following example illustrates one way to traverse a folder structure to
determine the size of its contents. There are other, more efficient ways to
accomplish this task (e.g., clever DQL as you will find in Section 3.4.8, Content,
Cabinet and Folder Queries); however, traversing a folder structure is an easy-to-
understand example of recursion. The function begins by taking the
r_object_id of the specified folder and getting the object Id, content size, and
object type for all the dm_sysobject objects it contains. It then simply iterates
over the collection summing the content size and recursively calling itself when it
encounters a dm_folder object. On the surface, this seems like a simple
recursion example. In reality, it's a good example of how not to do recursion with
collection objects.

Function doRecursiveQuery(ByVal fold_id As String) As Long
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim totalSize As Long

Chapter 3 – Working With Queries and Collections

102

 Set q = cx.getQuery
 q.setDQL ("select r_object_id,r_content_size, " _
 & "r_object_type from dm_sysobject where " _
 & "folder(id('" & fold_id & "'))")
 Set col = q.execute(session, DF_READ_QUERY)

 While (col.Next = True)
 If (col.getString("r_object_type") = "dm_folder") Then

 ' !!! THIS RECURSIVE CALL SHOULD BE AVOIDED !!!
 totalSize = totalSize +
 doRecursiveQuery(
 col.getString("r_object_id"))
 Else
 totalSize = totalSize +
 col.getInt("r_content_size")
 End If
 Wend
 col.Close

 doRecursiveQuery = totalSize

End Function

The problem with this example is that the recursive call is made from inside the
loop processing the collection. When the recursive call is made, the current
collection is left open and a new one is created by the recursive call. The current
collection won't be closed until the recursive call returns. In all likelihood, the
recursive call will make a recursive call, and so on…. Eventually you will run out
of collection objects.

The following code snippet illustrates a technique to avoid running out of
collection objects when doing this type of recursion. Instead of processing the
collection as it iterates over it, this code saves the information in each collection
row to a Visual Basic array as a delimited string. It then closes the collection, and
processes the array. The recursive call is made from within the array-processing
loop, so there is only ever one collection open at a time.

Source Code A working example of this source code can be found in the
"Chapter3/Recursive Collection" directory of the source code archive.

Function doRecursiveQuery(ByVal fold_id As String)
 Dim q As IDfQuery

Chapter 3 – Working With Queries and Collections

103

 Dim col As IDfCollection
 Dim totalSize As Long
 Dim arrObj() As String
 Dim row As Variant
 Dim emptyDir As Boolean
 Dim colRow() As String

 emptyDir = True
 Set q = cx.getQuery
 q.setDQL ("select r_object_id,r_content_size, " _
 & "r_object_type from dm_sysobject where " _
 & "folder(id('" & fold_id & "'))")
 Set col = q.execute(session, DF_READ_QUERY)

 While (col.Next = True)

 ' if array uninitailized, init to 1
 If (emptyDir = True) Then
 ReDim arrObj(1)
 emptyDir = False
 ' extend array by one
 Else
 ReDim Preserve arrObj(UBound(arrObj) + 1)
 End If

 ' save collection to array as delimited string
 ' for example: 0000000000000000::1234::dm_document

 arrObj(UBound(arrObj)) = col.getString("r_object_id") _
 & "::" _
 & col.getString("r_content_size") _
 & "::" _
 & col.getString("r_object_type")

 Wend
 col.Close

 ' process array of delimited strings
 If (Not emptyDir) Then
 For Each row In arrObj
 If (row = "") Then
 ' noop
 Else
 ' split on delimter
 colRow = Split(row, "::")

 ' if it's not a folder, add the objects size

Chapter 3 – Working With Queries and Collections

104

 If (colRow(2) <> "dm_folder") Then
 totalSize = totalSize + colRow(1)
 Else
 ' if it is a folder, recurse into it
 totalSize = totalSize +
 doRecursiveQuery(colRow(0))
 End If
 End If
 Next row
 End If
 doRecursiveQuery = totalSize

End Function

This code snippet illustrates a very simple implementation of recursive
processing. You can easily imagine examples that are more complicated. The
drawbacks to this technique are it's slow, and resource expensive. Both of these
faults are primarily due to how Visual Basic handles dynamic arrays, of which
this examples utilizes two (arrObj and colRow). If you really need to
calculate the size of a folder's content, use one of the DQL queries discussed later
in this chapter instead of a recursive, Visual Basic function.

3.3.5 Processing Collections With Unknown Content

You will discover that in the quest to write generic and multi-use application
code, you will often need to process collections that have unknown content.
These collections may contain the results of a user-generated query, or contain the
results of any of numerous application-generated queries that are centrally
processed. For example, you might have a custom search screen that allows the
user to input DQL to be executed. You have no idea what attributes or objects
they might search on, so how can you process the results? In these cases, you
don't know the attribute names or types contained in the collection and; therefore,
you cannot process it by simply issuing IDfCollection.getXXX() method
calls. The solution is to interrogate the IDfCollection object regarding its contents
before you process it. The following code snippet demonstrates how to process
the contents of any collection.

The first step is to get a row from the IDfCollection object before you issue the
IDfCollection.Next() method call to advance the collection pointer. This
allows you to work with the collection object itself before you process its rows.

Chapter 3 – Working With Queries and Collections

105

Once you have the collection, get the number and names of the attributes to
process.

Source Code A working example of this source code can be found in the
"Chapter3/Unknown Collection" directory of the source code archive.

Dim attr As IDfAttr
Dim q As IDfQuery
Dim col As IDfCollection
Dim numCols As Integer
Dim colName As String
Dim colValue As String
Dim i As Integer

Set q = cx.getQuery
q.setDQL ("select * from dm_document where owner_name = user")
Set col = q.execute(session, DF_READ_QUERY)

' get number of attrs in collection
numCols = col.getAttrCount

' get column names from attrs in collection
For i = 1 To numCols
 colName = col.GetAttr(i - 1).getName

 ' process colName
 Debug.Print "col " & i & " = " & colName
Next i

The next step is to iterate over the collection. You do this as you would any
collection, with one catch. The catch is that you must specifically process the
value in each column by assigning it to an IDfAttr object and testing the IDfAttr
object's content type to determine how to retrieve its value.

' iterate over collection and process each row
While (col.Next = True)

 ' process each column in a row
 For i = 1 To numCols
 Set attr = col.GetAttr(i - 1)

 ' get value in column
 Select Case attr.getDataType
 Case DF_BOOLEAN

Chapter 3 – Working With Queries and Collections

106

 colValue = col.getBoolean(attr.getName)
 Case DF_DOUBLE
 colValue = col.getDouble(attr.getName)
 Case DF_ID
 colValue = col.getId(attr.getName).toString
 Case DF_INTEGER
 colValue = col.getInt(attr.getName)
 Case DF_STRING
 colValue = col.getString(attr.getName)
 Case DF_TIME
 colValue = col.getTime(attr.getName).toString
 End Select

 ' process colValue
 Debug.Print "col " & i & " val = " & colValue
 Next i
Wend
col.Close

This is the recommended technique for processing collections with unknown
content. The important thing to remember is you can interrogate the
IDfCollection object for information about itself and use that information to
process its contents accordingly.

3.4 Useful Queries
This section presents an assortment of useful queries I have developed or
collected over the years. I have not put a lot of effort into explaining each query
other than providing a brief description of what each one does and why you would
use it. In that regard, this section is much more how-oriented than why-oriented.
The queries are grouped in the following broad categories:

• Full-Text Queries,
• Full-Text Index Queries,
• Registered Table Queries,
• Virtual Document Queries,
• Workflow Queries,
• Object Queries,
• Content, Cabinet and Folder Queries.

Chapter 3 – Working With Queries and Collections

107

All of the queries are written in DQL, as opposed to Visual Basic.

3.4.1 Full-Text Queries

This collection of queries provides several examples of full-text queries. Some
queries are written as both SEARCH DOCUMENT CONTAINS queries and
SEARCH TOPIC queries to illustrate the nuance of each syntax. Several of these
queries use special DQL full-text search keywords to demonstrate their use also.
These queries assume an object containing the text of the U. S. Constitution is in
the Docbase.

3.4.1.1 Basic Single-Word Search

These queries illustrate a basic, single-word search of the full-text index. Notice
the use of HITS, SCORE, and SUMMARY keywords to return specific information
about each object and not just it's object Id and name. I have also included a
WHERE clause for further illustration. These queries return the objects with the
highest score first.

select object_name, r_object_id, hits, score, summary from
 dm_document search document contains 'constitution' where
 any author = 'Madison' order by score desc;

Or, using the TOPIC SEARCH form:

select object_name, r_object_id, hits, score, summary from
 dm_document search topic 'constitution' where any author =
 'Madison' order by score desc;

Another option when doing a single-word search is to use the Verity evidence
operator <word>.

select object_name, r_object_id, hits, score, summary from
 dm_document search topic '<word> constitution' where any
 author = 'Madison' order by score desc;

This query will return similar results as the previous two queries; however, you
will notice the <word> operator affects the score and ranking of the results.

Chapter 3 – Working With Queries and Collections

108

3.4.1.2 Basic Multi-Word Search

This set of queries illustrates searching for multiple words in a document with no
qualification on their relationship (i.e., They can be next to each other, in different
paragraphs, or one in the text of the object and one in the metadata.).

select object_name, r_object_id, hits, score, summary from
 dm_document search document contains 'constitution' and
 'people' order by score desc;

Or, using the SEARCH TOPIC form:

select object_name, r_object_id, hits, score, summary from
 dm_document search topic 'constitution <and> people' order
 by score desc;

3.4.1.3 Search For A Phrase

Search for the phrase "more perfect union."

select * from dm_document search topic '<phrase> (more perfect
 union)';

Beware of using stop words when searching for phrases. Searching for "a more
perfect union" will not produce any results because the word "a" is not in the
index. Also, note the parentheses are necessary to denote the phrase.

3.4.1.4 Search For Words Near Each Other

This query demonstrates how to search for words that are near each other, in this
case, within four words of each other.

select * from dm_document search topic 'people <near/4>
 state';

3.4.1.5 Search For Words In The Same Paragraph

This query finds objects whose content contains the words "people" and "state" in
the same paragraph.

Chapter 3 – Working With Queries and Collections

109

select * from dm_document search topic 'people <paragraph>
 state';

3.4.1.6 Find A Particular Object In The Full-Text Index

This query will return all of the attributes for the object with r_object_id of
0900218d80034d35.

select * from dm_sysobject search topic '0900218d80034d35';

3.4.1.7 Find An Attribute Value

This query finds objects that have a particular attribute value. In this case, the
object_name contains the word "Constitution".

select * from dm_sysobject search topic 'object_name
 <contains> constitution';

3.4.2 Full-Text Index Queries

This collection of queries concerns the full-text index itself. These are not full-
text queries, rather queries about the full-text index.

3.4.2.1 Find All Objects In The Full-Text Index

This query finds all the objects in the Docbase that have been full-text indexed.

select * from dm_sysobject search topic '';

3.4.2.2 Counting The Number Of Objects In The Full-Text Index

This query counts the number of objects in the Docbase that have been full-text
indexed.

select count(*) from dm_sysobject (all) search topic '';

Chapter 3 – Working With Queries and Collections

110

3.4.2.3 Determine If An Object Type Can Be Full-Text Indexed

This query returns a list of format types that can be full-text indexed.

select * from dm_format where can_index = true;

3.4.2.4 Mark An Object For Full-Text Indexing

This query marks the object with r_object_id of 0900218d80034d35 for
full-text indexing by setting it’s a_full_text attribute to true. The
dm_FulltextMgr job will put this object in the index the next time it runs.

update dm_sysobject object
 set a_full_text = true
 where r_object_id = '0900218d80034d35';

3.4.2.5 Find Objects That Passed Indexing

This query returns the objects that were successfully full-text indexed.

select * from dm_sysobject where a_full_text = 1 and
r_object_id in
 (select parent_id from dmr_content where any
 update_count = 0 and any index_set_times <=
 date(now));

3.4.2.6 Find Objects That Failed Indexing

This query returns all the objects that failed full-text indexing.

select * from dm_sysobject where a_full_text = 1 and
r_object_id in
 (select parent_id from dmr_content where any
 update_count < 0 and any index_set_times <=
 date(now));

Chapter 3 – Working With Queries and Collections

111

3.4.2.7 Find Objects Pending Indexing

This query returns all the objects in the Docbase that are awaiting full-text
indexing.

select * from dm_sysobject where a_full_text = 1 and
r_object_id in
 (select parent_id from dmr_content where any
 index_operations != 2 and any index_set_times >=
 date(now));

3.4.3 Registered Table Queries

This section discusses registered table queries. Registered tables are RDBMS
tables that you add to the database to work in conjunction with Documentum.
Registered tables serve many purposes from holding lookup values, to gluing
together disparate applications. Registering RDBMS tables in Documentum
allows you to query and/or update these tables using DQL. The following queries
all assume the underlying RDBMS is Oracle®. These queries may need to be
altered slightly for Microsoft SQL Server™ or other RDBMS.

3.4.3.1 Register A Table

To register a table, you must know the table's schema (structure) and be logged
into Documentum as the Docbase Owner (dm_dbo). For example, assume you
have created an RDBMS table named USSTATES that contains the names and
postal abbreviations of the 50 United States, in two columns:

• state_name varchar2(25)
• state_abbr varchar2(2)

To register the USSTATES table in Documentum, use the following DQL
statement.

register table usstates (state_name string(25), state_abbr
 string(2));

Chapter 3 – Working With Queries and Collections

112

The result of this query is the r_object_id of a newly created
dm_registered object. This object contains the table's column descriptions in
its attributes. You can query this newly created registered table like this:

select * from dm_dbo.usstates;

Note you must preface the table name with dm_dbo since the table lives in the
Docbase Owner's table space.

An interesting shortcut exists for the register table command: you don't
have to explicitly describe the table's schema to register the table. You can (and
Documentum does!) get away with just listing a dummy column description and
still have access to the entire table structure. Therefore, to simplify registering
tables, you can use syntax like this:

register table usstates (dummy string(10));

and still be able to perform queries like this:

select state_name, state_abbr from dm_dbo.usstates;

3.4.3.2 Unregister A Table

Unregistering a table makes it inaccessible from Documentum. It does not drop
the table from the RDBMS. It only destroys the dm_registered object that
points to it. The syntax is very simple:

unregister table usstates;

You can re-register the table without affecting the actual RDBMS table itself.

3.4.3.3 Registered Table Permissions

By default, registered tables are given the following access controls:

world_permit = 3*

* See Chapter 7, Tips, Tools and Handy Information, for a list of object permissions.

Chapter 3 – Working With Queries and Collections

113

group_permit = 5
owner_permit = 7

These permissions govern what can be done to the dm_registered object.
You must have at least Browse (2) permission to query a registered table.

The underlying RDBMS table receives these access controls:

world_table_permit = 1
group_table_permit = 1
owner_table_permit = 1

These permissions govern what can be done to the RDBMS table. Other than the
Browse permission required to see the dm_registered object, these
permission sets have nothing to do with one another. To give users the ability to
update, insert, or delete from the RDBMS table, you must change the values of
the table permits listed above. The following DQL illustrates updating the
RDBMS permissions for the USSTATES registered table to allow the world and
group to insert rows, and the owner full control.

update dm_registered objects
 set world_table_permit = 4,
 set group_table_permit = 4,
 set owner_table_permit = 15
 where object_name = 'usstates';

3.4.3.4 Insert Into A Registered Table

Inserting rows into a registered table is no different from inserting rows into any
RDBMS table, with the exception that the registered table name should be
prefaced with the Docbase Owner's alias, dm_dbo. For example:

insert into dm_dbo.usstates (state_name,state_abbr) values
 ('Texas','TX')

Make sure your table permits allow you to make insertions (see Section 3.4.3.3,
Registered Table Permissions).

Chapter 3 – Working With Queries and Collections

114

3.4.4 Virtual Document Queries

These queries deal with virtual documents. Virtual documents are a Documentum
construct that allows multiple files to be bound and managed as a single entity.
For example, each chapter of a book can be an individual file, and a book virtual
document will allow you to manage them all as a single entity—a book. Virtual
documents are best dealt with through the DFC or the API, but sometimes you
need to access them from DQL too. So, here are a few useful queries

3.4.4.1 Find Virtual Documents

This query finds all the virtual documents in the Docbase.

select * from dm_sysobject where r_is_virtual_doc = true;

3.4.4.2 Find The Number Of Components In A Virtual Document

For a virtual document with an object Id of 0900218d8000ad97, this query
will return its number of components (child documents, or nodes).

select r_link_cnt from dm_sysobject where r_object_id =
 '0900218d8000ad97';

Remember, this count includes the object itself, so the actual number of children
is really one less than the value returned.

3.4.4.3 Find Components Of A Virtual Document

For a virtual document with object Id of 0900218d8000ad97, this query will
return its children and descendants.

select * from dm_sysobject in document id('0900218d8000ad97')
 descend;

Chapter 3 – Working With Queries and Collections

115

3.4.4.4 Find An Object's Virtual Document Parent

For a document with an i_chronicle_id of 0900218d8008d71, this query
will return the document's virtual document parent.

select parent_id from dmr_containment where component_id =
 '0900218d80008d71';

3.4.5 Workflow Queries

To put these queries into context, let me begin with a brief overview of workflow
objects and their relationships. Workflows are created using the Workflow
Editor, a graphical tool included with the Documentum Application Builder. The
product of the Workflow Editor is a workflow template represented by a
dm_process object. Each activity definition in the template is represented by a
dm_activity object. One workflow template will contain many activity
objects.

When a workflow template is instantiated (when a user starts a workflow), it is
instantiated as a dm_workflow object. As each of the activities in the workflow
are activated, the dm_activity objects that represent them create two other
objects: dmi_workitems and dmi_package. The dmi_workitem object
represents the task that each performer must complete, and the dmi_package
contains the content on which the activities are to occur. By querying this
hierarchy of objects, we can elicit information and statistics about nearly every
aspect of a workflow.

The following queries were designed to work together to provide an in-depth look
at workflows. Each of these queries uses the results from queries that precede it
as input. The queries use the DQL keyword as to identify values that are needed
in the succeeding queries. Those values are then referenced as <value name>
in the queries. Each occurrence of this convention is in bold typeface to help you
readily identify it.

Chapter 3 – Working With Queries and Collections

116

3.4.5.1 Get Workflow For Specific Object

This query finds the workflow in which the object with object Id of
0900218d8008d71 is a participant.

select distinct r_workflow_id from dmi_package where any
 r_component_id = '0900218d8008d71';

r_workflow_id is the r_object_id of the workflow object.

3.4.5.2 Get All Active Workflows

This query will return all of the workflow objects that are dormant, running, or
finished.

select distinct r_object_id as wfid from dm_workflow where
 r_runtime_state < 3;

Returns: wfid, the r_object_id of the workflow object

3.4.5.3 Get Workflow Information

This query uses the wfid value from the previous query to retrieve statistical data
about the workflow.

select r_start_date, r_runtime_state, w.r_object_id,
 p.object_name, supervisor_name, w.object_name from
 dm_workflow w, dm_process p where w.r_object_id = '<wfid>'
 and w.process_id = p.r_object_id order by r_start_date;

3.4.5.4 Get Activities Information

This query uses the wfid value from a previous query to retrieve information
about the workflow's activities.

select distinct r_object_id, r_act_def_id, a.object_name,
 message, due_date, priority, task_name, r_act_seqno as
 seqno, r_workflow_id from dmi_workitem w, dmi_queue_item
 q, dm_activity a where w.r_workflow_id = '<wfid>' and

Chapter 3 – Working With Queries and Collections

117

 w.r_act_def_id = a.r_object_id and w.r_queue_item_id =
 q.r_object_id;

Returns: seqno, the r_act_seqno for each of the workflow's activities.

3.4.5.5 Get Packages Information

This query gets all of the packages referenced by a particular activity. It uses the
seqno of the activity, and wfid of the workflow from previous queries.

select r_object_id as pkgid, r_package_name, r_package_label
 from dmi_package where r_act_seqno = <seqno> and
 r_workflow_id = '<wfid>';

Returns: pkgid, the r_object_id of each package.

3.4.5.6 Get Components

This query uses pkgid from the previous query to select the package's
components. These components are the actual content objects, which the
workflow passes among its participants for processing.

select r_component_id as compid, r_note_id, r_note_flag,
 r_note_writer from dmi_package where r_object_id =
 '<pkgid>';

Returns: compid, the r_object_id of each component.

3.4.5.7 Get Components Information

This query retrieves basic information from the dm_sysobject that is the
component of the package. It uses the compid from the previous query.

select r_object_id, object_name, owner_name, r_version_label
 from dm_sysobject where r_object_id = '<compid>';

Chapter 3 – Working With Queries and Collections

118

3.4.5.8 Get Activity Performers

This query returns information about an activity's performers. It uses the wfid of
the workflow and the seqno of the activity from previous queries.

select i.r_object_id, name, due_date, priority, task_state,
 r_workflow_id, exec_type from dmi_workitem i,
 dmi_queue_item q, dm_activity a where i.r_workflow_id =
 '<wfid>' and i.r_act_seqno = <seqno> and a.exec_type = 0
 and i.r_act_def_id = a.r_object_id and i.r_queue_item_id =
 q.r_object_id);

3.4.5.9 Determine Who Has An Object

Occasionally, you need to know in whose Inbox an object's workflow task
resides. You may find this important if you are debugging a workflow, or
generating a report on workflow activity. For an object Id of
0900218d8008d71, this query will return the names of the users that have an
Inbox item associated with this object.

select distinct name from dmi_queue_item where router_id in
 (select r_object_id from dm_workflow where r_object_id in
 (select r_workflow_id from dmi_package where any
 r_component_id = '0900218d8008d71')
) and delete_flag = false;

3.4.5.10 Get The Id Of An Object In A Workflow Package

The last workflow-related query I will share with you is particularly useful when
it is used in an automated workflow activity. Automated workflow activity
methods have workflow-related arguments passed to them by the workflow
engine. Two of these arguments are the workflow Id (named router_id) and
the current activity's sequence number (named task_number). Using these two
arguments you can determine the object Id of the objects in the package.

select r_component_id from dmi_package where r_workflow_id =
 '<router_id>' and r_act_seqno = '<task_number>';

Chapter 3 – Working With Queries and Collections

119

Once you have obtained the Ids of the objects in the package, you can manipulate
the objects as part of the automated workflow activity's processing.

3.4.6 Inbox Queries

Closely related to the operation of workflows is the Inbox. The queries in this
section perform some common tasks on the Inbox.

3.4.6.1 Check For Inbox Notifications

This query determines if there are any new, unread notifications in your Inbox.

select count(*) from dmi_queue_item where name = user and
 delete_flag = false;

Note this query uses the DQL user keyword to indicate the user running the
query.

3.4.6.2 Get Inbox Notifications

This query retrieves any new or unread notifications in your inbox.

select task_name, sent_by, message, date_sent, due_date,
 priority from dmi_queue_item where name = user and
 delete_flag = false;

3.4.6.3 Delete Inbox Notifications

Occasionally, you need to delete a bunch of Inbox notifications en masse. For
example, suppose a job failed overnight and sent dmadmin a notification every
minute. There could be thousands of notifications in dmadmin's Inbox before you
know it. Deleting these notifications using the Documentum Desktop UI is
cumbersome; it would be easier just to delete them with a query. This query
deletes notifications in your Inbox that are associated with a particular event.

update dmi_queue_item objects
 set delete_flag = true

Chapter 3 – Working With Queries and Collections

120

 where event = '<event name>' and name = user;

where <event name> is the name of a particular event, for example,
Job_Failure. This query doesn't really delete the notifications, it just flags
them for deletion. The dm_QueueMgt job actually deletes them.

3.4.7 Object Queries

This section contains a miscellaneous collection of queries that deal with objects
in the Docbase.

3.4.7.1 Find All Objects With The Same Root Object

By default, the Documentum Server only returns the current version of objects.
The DQL keyword (all) forces the server to return all versions of objects. This
query assumes you have an object with an r_object_id of
0900218d800492a2.

select * from dm_sysobject (all) where i_chronicle_id in
 (select i_chronicle_id from dm_sysobject where
 r_object_id = '0900218d800492a2');

Without the use of (all) in the above query, your result set would only contain
one object: 0900218d800492a2.

3.4.7.2 Find Your Locked Objects

This query returns all objects in the Docbase locked by you.

select * from dm_sysobject where r_lock_owner = user;

You can change the value tested in the predicate to any valid Docbase user's login
Id (user_os_name) and return the objects locked by them also.

Chapter 3 – Working With Queries and Collections

121

3.4.7.3 Unlock A Locked Object

This query assumes an object with an object Id of 0900218d8000ad97 is
checked out. It releases the lock on the object, which effectively cancels the
checkout.

update dm_sysobject object
 set r_lock_owner = '',
 set r_lock_machine = '',
 set r_lock_date = date('nulldate')
 where r_object_id = '0900218d8000ad97';

You must have Superuser privileges in the Docbase to perform this query.

3.4.7.4 Unlock All Locked Objects

This query will unlock all the objects in the Docbase that are currently locked
(checked out). Be careful, this query could cause you a lot of trouble.

update dm_sysobject object
 set r_lock_owner = '',
 set r_lock_machine = '',
 set r_lock_date = date('nulldate')
 where r_object_id in
 (select r_object_id from dm_sysobject where
 r_lock_owner is not nullstring);

You must have Superuser privileges in the Docbase to perform this query.

3.4.8 Content, Cabinet, and Folder Queries

The queries in this section deal with object content, cabinets, and folders.

3.4.8.1 Determine The Content Size Of A Cabinet (Method I)

This query summarizes the size of all of the content in the /Temp cabinet and its
sub-folders. You can replace /Temp with any cabinet you like.

select sum(r_content_size) from dm_document (all) where

Chapter 3 – Working With Queries and Collections

122

 cabinet('/Temp',descend);

Using the folder() predicate function instead of cabinet() will also work.
For example:

select sum(r_content_size) from dm_document (all) where folder
 ('/System/Applications',descend);

3.4.8.2 Determine The Content Size Of A Cabinet (Method II)

This query is a variation on the previous one. Given a cabinet, /System in this
example, it summarizes and displays the size of the content in each individual
sub-folder.

select f.object_name, sum(d.r_content_size) from dm_folder
 (all) f, dm_document (all) d where any d.i_folder_id =
 f.r_object_id and cabinet('/System', descend) group by
 f.object_name;

This query is much more impressive if you see the output. Take a look.

object_name sum(d.r_content_size)
––––––––––––– ––––––––––-----------
Actions 18421
Applications 0
DataDictionary 0
DcDesktopClient 22106
Default XML Application 4590
Desktop Client 182865
Distributed References 0
FileSystem 0
Jobs 0
Methods 152999
Procedures 4821
Reports 805154
Startup Items 159470
Views 3238
Workspace Customizations 0

Again, using the folder() predicate function instead of cabinet() will also
work. For example:

Chapter 3 – Working With Queries and Collections

123

select f.object_name, sum(d.r_content_size) from dm_folder
 (all) f, dm_document (all) d where any d.i_folder_id =
 f.r_object_id and folder('/System/Applications',descend)
 group by f.object_name;

Be aware, this query can take a long time to run.

3.4.8.3 Find Deleted Content

When you delete an object in Documentum, the content is not deleted
immediately. Instead, a delete simply disconnects the record in the RDBMS from
the content on the file system. The dm_DMClean and dm_DMFileScan jobs
then search for these disconnected fragments and permanently delete them.

This query finds all of the content objects that have been disconnected from their
dm_sysobject objects, but have not yet been deleted by the dm_DMClean
job.

select * from dmr_content where any parent_id is NULL and
 content_size > 0 order by set_time;

It is possible to recover this content by retrieving its file system path using the
apply() API method with the GET_PATH function, and assigning it to a new
dm_sysobject.

3.4.8.4 Find Folder Paths From An Object Id

Given an object Id of 0900218d80034d35, this query will return the object's
folder paths in the Docbase. This concept is addressed again in Chapter 5, Proven
Solutions for Common Tasks.

select r_folder_path from dm_folder where r_object_id in
 (select i_folder_id from dm_sysobject where r_object_id =
 '0900218d80034d35');

Chapter 3 – Working With Queries and Collections

124

3.4.9 Setting Up Indexes

If you know your application will make numerous queries on a particular
attribute, or set of attributes, it may be advantages to set up indexes on these
attributes. Indexes are RDBMS constructs that improve query performance on
particular table columns (i.e., attributes) by setting up special search and retrieval
mechanisms on them. Once these indexes are set up, they are automatically
updated with each change to the table, and are automatically used by
Documentum when querying.

To create indexes, use the EXECUTE DQL command with the MAKE_INDEX
function, or the apply() API method. The basic format for the DQL statement
is:

execute make_index with type_name=’<object name>’,
 attribute=’<attribute name>’, attribute=’<attribute
 name>’...

For example:

execute make_index with type_name=’regional_doc’,
 attribute=’region’, attribute=’usstate’;

This query creates an index for reginal_doc object type on the region
attribute and the usstate attribute.

3.5 Chapter Summary
This chapter discussed three ways to create and execute queries:
IDcRunQuery.RunQuery(), the Query Manager (IDfQueryMgr), and the
IDfQuery class. Each of these techniques has its role and purpose. Generally, the
IDfQuery class gives you the greatest flexibility, but also requires the most
programming. Conversely, RunQuery() requires little programming, but you
have no control over the processing or display of the results. The Query Manager
falls somewhere in between. It provides an easy way to construct queries from
UIs, while still allowing you to manipulate the results. It is also the preferred
method for searching multiple Docbases simultaneously.

Chapter 3 – Working With Queries and Collections

125

Hand-in-hand with generating queries, this chapter discussed handling and
processing their results, IDfCollection objects. Several techniques for processing
collections were discussed to include: calculating its size, recursive processing,
and processing collections of unknown content.

This chapter also discussed three types of queries: SQL pass-through queries,
cached queries, and full-text queries. SQL pass-through queries target RDBMS
tables, are rare, and require the use of the EXECUTE DQL command. Cached
queries can be very beneficial if used in the right circumstance and having been
properly configured. Full-text searches were examined in-depth to expose their
power. For searching document content and attributes not involved in complex
joins, you should use a full-text search for speed and accuracy.

Finally, this chapter presented a collection of useful queries regarding full-text
indexes, registered tables, virtual documents, workflows, and other Docbase
objects.

Chapter 4 – Implementing Core Document Management Functions

126

4
4 Implementing Core

Document Management
Functions

This chapter discusses implementing core document management functions.
These functions are often called library services because they control the
movement of objects into and out of the Docbase. The core document
management functions* I will discuss are:

• Create
• Delete
• Copy
• Checkout
• View
• Cancel checkout
• Checkin

* Technically, Import and Export are also considered library services, but they are not discussed here.

Chapter 4 – Implementing Core Document Management Functions

127

These seven actions represent the basic functions of any document management
system and its clients. That being true, you can expect to encounter the need to
implement them frequently. In this chapter, I will demonstrate how to implement
each of these functions in two different ways: first, with custom code using only
the DFC, queries, and custom logic. These implementations will explore the logic
behind these functions. Second, the same operations will be implemented using
Documentum's IDfOperation classes. IDfOperation classes encapsulate all of the
process logic for these functions and allow you to implement them with little
programming. The IDfOperation classes provide a simple and consistent
implementation of these core functions, and are your best choice for
implementation.

4.1 Implementing Library Functions With
The DFC

This section demonstrates implementing the core document management
functions using only basic DFC classes and queries. Several of the core functions
in this section have interesting and important variations that are explored. For
example, objects can be created with or without content, or from a template.
Deleting objects can be done individually, as a group, or as a hierarchical folder
structure.

4.1.1 Creating Objects

Creating new objects in the Docbase is a simple task, as the following example
illustrates. However, as you expect your code to do more than just create an
object, this process becomes more involved. This example creates an object with
the name, “regional doc 1,” and saves it to the user’s default (Home) cabinet.
This is the minimum implementation for object creation.

Dim sobj As IDfSysObject

Set sobj = session.newObject("dm_document")
sobj.setObjectName ("regional doc 1")
sobj.save

Chapter 4 – Implementing Core Document Management Functions

128

4.1.1.1 Creating Objects With Content And Location

What if you want your new object to contain content and reside in a specific
folder? A slight augmentation to the code can accomplish this. The following
code snippet adds content to a newly created object by using the
IDfSysObject.setFile() method. Before you can save an object with
content, you must specify the format of the content using
IDfSysObject.setContentType()*. After the content and the format are
set, the object is placed in the /Temp cabinet by using the
IDfSysObject.link() method. When the object is saved, the file is
automatically transferred from your workstation, to the Content Server.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Create" directory of the source code archive.

Dim sobj As IDfSysObject

Set sobj = session.newObject("dm_document")
sobj.setContentType ("crtext")
sobj.setFile ("c:\reports\regions\ne\q1.txt")
sobj.setObjectName ("regional doc 1")
sobj.link ("/Temp")
sobj.save

4.1.1.2 Creating Object Content From A Variable

What if you want to use the content of a Visual Basic variable and not a file on
the file system as the content for an object? This might be the case if you are
dynamically creating content, for example, as the result of a DQL query or XML
operation. To set the content of an object from a variable, you need to convert the
variable to a ByteArrayOutputStream, and use the
IDfSysObject.setContent() method. Of course,
ByteArrayOutputStream variable types don’t exist in Visual Basic. Fortunately,
the IDfClientX class will manufacture one for you using the
StringToByteArrayOutputStream() method if you give it a String.

* Valid values for content type can be found in Chapter 7, Tips, Tools and Handy Information.

Chapter 4 – Implementing Core Document Management Functions

129

The following code snippet illustrates using the setContent() and
StringToByteArrayOutputStream() methods to set an object's content
from a variable. In this example, the Preamble to the U. S. Constitution is stored
in a string variable and used as the content for a new dm_document object.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/SetContent" directory of the source code archive.

Dim sobj As IDfSysObject
Dim content As String

content = "We the People of the United States, in Order to " _
 & "form a more perfect Union, establish Justice, insure " _
 & "domestic Tranquility, provide for the common defence, " _
 & "promote the general Welfare, and secure the Blessings " _
 & "of Liberty to ourselves and our Posterity, do ordain " _
 & "and establish this Constitution for the United States " _
 & "of America."

Set sobj = session.newObject("dm_document")
sobj.setContentType ("crtext")

' convert string to BAOS
sobj.setContent cx.StringToByteArrayOutputStream(content)

sobj.setObjectName ("Preamble")
sobj.link ("/Temp")
sobj.save

Notice it is still necessary to set the content's format using the IDfSysObject.
setContentType() method.

4.1.1.3 Creating An Object From A Template

This last snippet of code dealing with object creation demonstrates how to create
a new object from a template in the Docbase. This is something you might do if
you have a standard format for documents of a specific type (e.g., an inter-office
memo). Documentum allows you to store a blank document as a template and
then create new documents from it. As you will see, this is the most complicated
way to create a new object in the Docbase.

Chapter 4 – Implementing Core Document Management Functions

130

To begin, this code retrieves the template. To simplify this example, I hard coded
the template's object Id. In a real application, you could use
IDfSession.getObjectByQualification() to retrieve the template.
Once I have the template, I save it as a new object using the
IDfSysObject.saveAsNew() method. The
IDfSysObject.saveAsNew() method saves the object as a new instance in
the Docbase, and generates a new object Id.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Template" directory of the source code archive.

Dim templateSObj As IDfSysObject
Dim copySObj As IDfSysObject
Dim foldObj As IDfFolder
Dim id As IDfId

' get MS Word 8 template
Set templateSObj =
 session.GetObject(cx.getId("0900218d80079051"))

' make a copy
Set id = templateSObj.saveAsNew(False)
Set copySObj = session.GetObject(id)

The IDfSysObject.saveAsNew() method saves the new object in the same
folder as the original. This is, of course, not what you want. To move the new
object, it first must be unlinked from its current location, and then linked to the
new one. Both the IDfSysObject.link() and IDfSysObject.
unlink() methods accept strings as input arguments that contain either a folder
path or a folder Id. The last step is to rename the object and save it.

' move copy
Set foldObj = session.GetObject(copySObj.getFolderId(0))
copySObj.unlink (foldObj.getFolderPath(0))
copySObj.link ("/Temp")

' rename copy
copySObj.setObjectName ("copy of " & copySObj.getObjectName)

'save copy
copySObj.save

Chapter 4 – Implementing Core Document Management Functions

131

4.1.2 Deleting Objects

Deleting a single object from the Docbase is a simple task: call
IDfSysObject.destroy(), or if you want to remove all of an object’s
versions, IDfSysObject.destroyAllVersions(). The following
example illustrates deleting an object with an object Id of
0900218d8003d538.

Dim sObj As IDfSysObject

' get the object
Set sObj = session.GetObject(cx.getId("0900218d8003d538"))

' destroy current object
sObj.destroy

' or, destroy them all
sObj.destroyAllVersions

You can also delete objects using DQL. The following examples are analogous to
the Visual Basic code above. The first example deletes a single object, even if it
isn’t the current version. The second example deletes all versions of an object.

delete dm_document objects where r_object_id =
 '0900218d8003d538'

delete dm_document (all) objects where i_chronicle_id =
 '0900218d8003d538'

In general, it is more efficient to delete objects with DQL than with the DFC. The
DFC method fetches the object to your workstation only to delete it. This wastes
time and bandwidth. With the DQL method, there is no fetch, so the delete is
much more efficient.

4.1.2.1 Deleting Collections Of Objects

Deleting a collection of objects is also straight forward as long as the objects are
all content-type objects (e.g., dm_document), and are not hierarchical folders or
cabinets. The problem with deleting cabinets and folders is that they must be

Chapter 4 – Implementing Core Document Management Functions

132

empty before they can be deleted. This problem and its solution are examined
later in this section.

Using the DFC, deleting a collection of objects can be accomplished like this:

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Delete1" directory of the source code archive.

Dim sObj As IDfSysObject
Dim q As IDfQuery
Dim col As IDfCollection
Dim cnt As Integer

' get a collection of objects
Set q = cx.getQuery
q.setDQL ("select r_object_id from dm_document where folder " _
 & "('/News/2002',descend)")
Set col = q.execute(session, DF_QUERY)
cnt = 0

' loop to destroy them
While (col.Next = True)

 ' fetching the object just to delete it is inefficient
 ' and expensive
 Set sObj = session.GetObject(cx.getId(_
 col.getString("r_object_id")))
 sObj.destroyAllVersions
 cnt = cnt + 1
Wend

MsgBox "Deleted " & cnt & " objects"
col.Close

The same task can be accomplished more efficiently using DQL, as follows.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Delete2" directory of the source code archive.

Dim q As IDfQuery
Dim col As IDfCollection

' delete objects using dql
Set q = cx.getQuery

Chapter 4 – Implementing Core Document Management Functions

133

q.setDQL ("delete dm_document (all) objects where folder" _
 & " ('/News/2002',descend))")

' get results
Set col = q.execute(session, DF_QUERY)
While (col.Next = True)

 ' display number of deleted objects
 MsgBox "Deleted " & col.getString(col.GetAttr(0).getName) _
 & " objects "
Wend
col.Close

Using the DQL technique is a better choice for implementation in this case. In the
first code snippet, each object is fetched from the Docbase and instantiated on the
client workstation, only to be deleted. This consumes a lot of unnecessary
overhead. In the second code snippet, DQL does all of the deleting, very
efficiently. The key to the success of the DQL is the DQL folder() function.
It collects the r_object_ids of the objects in the folder structure indicated so
the DELETE statement can delete them en masse. The collection processing loop
in this code snippet is only necessary to retrieve the number of objects deleted.

4.1.2.2 Deep Delete

Deletes get tricky when you want to delete a collection of objects and a folder
hierarchy (i.e., prune a folder structure). This is often referred to as a deep delete.
To avoid any problems you must delete a folder’s contents first and then the
folder. This is accomplished bottom up, so that no folder you delete contains any
content or other folders.

The code snippet below accomplishes this using a recursive algorithm. For input,
the DeepDelete() subroutine expects an IDfPersistentObject that represents a
folder, and performs a query to gather the object Ids of all of the
dm_sysobject objects contained in it. The query results are then analyzed,
and if one of the returned objects is a folder, the DeepDelete() subroutine
calls itself, passing the folder object as the input argument.

Chapter 4 – Implementing Core Document Management Functions

134

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Deep Delete" directory of the source code archive.

Sub DeepDelete(fold As IDfPersistentObject)
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim rows() As String
 Dim pObj As IDfPersistentObject
 Dim i As Integer
 Dim emptyDir As Boolean

 emptyDir = True
 Set q = cx.getQuery

 ' get all sys_objects in this folder
 q.setDQL ("select r_object_id from dm_sysobject (all) " _
 & "where folder(id('" & fold.getObjectId.toString _
 & "'))")

 Set col = q.execute(session, DF_READ_QUERY)

The collection processing here is the same as in the recursive example in Chapter
3, Working with Queries and Collections. Instead of manipulating the objects
inside the collection-processing loop, they are stored in a dynamic array and the
collection is closed. This is extremely important. These object Ids must be
persisted during recursive calls, but the IDfCollection object cannot stay open.

 ' process collection
 While (col.Next = True)

 ' if array uninitialized, init to 1
 If (emptyDir = True) Then
 ReDim rows(1)
 emptyDir = False
 ' extend array by one
 Else
 ReDim Preserve rows(UBound(rows) + 1)
 End If

 ' put obj id in array
 rows(UBound(rows)) = col.getString("r_object_id")

 Wend
 col.Close ' IMPORTANT! close collection

Chapter 4 – Implementing Core Document Management Functions

135

Each object Id in the rows() array is tested to determine whether its object is a
dm_folder object. This is accomplished by doing a quick string compare on
the Id. If it starts with "0b" it's a folder. This technique has the added benefit of
catching custom subtypes of dm_folder also. If the object is a folder (or
subtype), a recursive call is made to DeepDelete() and the object is passed as
the argument. The processing of the current iteration of the subroutine is put on
hold until the recursive call returns. When the recursive call returns, processing
of the current iteration continues. The object is ultimately deleted by the
IDfPersistentObject.destroy() method. Thus, each object is deleted
while iterating over the array, not while processing the collection.

 ' process array if it was initialized
 If (emptyDir = False) Then
 For i = 1 To UBound(rows)

 ' get the object
 Set pObj = session.GetObject(cx.getId(rows(i)))

 ' if it's a folder, recurse into it
 If ((InStr(1, rows(i), "0b", vbTextCompare) _
 = 1)) Then
 Call DeepDelete(pObj)
 End If

 ' delete object
 pObj.destroy
 Next i
 End If

End Sub

To call the DeepDelete() function, use code like this:

' get a folder
Set pObj = session.GetObject(cx.getId("0b0023eb800001db"))
Call DeepDelete(pObj)

An improvement to this subroutine would be to delete all of the content in the
folder hierarchy first. DQL similar to that found in the second example of Section
4.1.2.1, Deleting Collections of Objects, would do it. Then the recursive part of
the function would only have to delete folders.

Chapter 4 – Implementing Core Document Management Functions

136

That code might look like this:

' delete objects using dql
Set q = cx.getQuery
q.setDQL ("delete dm_document (all) objects where folder" _
 & " (id("0b0023eb800001db",descend))")

Set col = q.execute(session, DF_QUERY)
While (col.Next = True)
 cnt = col.getString(col.GetAttr(0).getName)
Wend
col.Close

Set pObj = session.GetObject(cx.getId("0b0023eb800001db"))
Call DeepDelete(pObj)

4.1.3 Copying Objects

You have already seen the code that copies objects in the Docbase, it was used in
Section 4.1.1.3, Creating an Object from a Template. It is present here in a more
concise form. The key to this piece of code is the sObj.saveAsNew()
method, which actually makes the copy in the Docbase. Unlike the previous
version of this code, this example does not move the copy to a new location; it
continues to reside in the folder with the original. Again, assume the object Id of
the object to copy is 0900218d80079051.

Dim sObj As IDfSysObject
Dim copySObj As IDfSysObject
Dim id As IDfId

' get object to copy
Set sObj = session.GetObject(cx.getId("0900218d80079051"))

' make a copy
Set id = sObj.saveAsNew(False)
Set copySObj = session.GetObject(id)

' rename copy
copySObj.setObjectName ("copy of " & copySObj.getObjectName)

'save copy
copySObj.save

Chapter 4 – Implementing Core Document Management Functions

137

4.1.3.1 Deep Copy

In a deep copy, you copy a folder and all of its contents–including other folders
with content–to a new location. Where a deep delete pruned of a tree structure, a
deep copy is analogous to a graft. This is similar to the old DOS xcopy function
or the UNIX cp –r function. As with the deep delete code discussed previously,
deep copy offers some interesting challenges and recursion.

The following code snippet demonstrates how to copy one folder hierarchy into
another. As input, it requires two IDfFolder objects that represent the from folder
and the to folder, respectively. The code loops through the from folder and copies
the objects it finds there to the to folder. If it happens to find a folder in the from
folder, it recurses into it.

The first thing you will notice about this code snippet is that it uses many
variables. The number of variables could be reduced, but I wanted to be explicit
concerning each variable's purpose to make the code easier to read. Also, note
this subroutine is broken into two distinct parts. The first part runs the query
within each folder to obtain a list of objects to copy, and the second part actually
does the copy and the recursive call.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Deep Copy" directory of the source code archive.

Sub DeepCopy(FromFold As IDfFolder, ToFold As IDfFolder)
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim rows() As String
 Dim i As Integer

 Dim sobj As IDfSysObject
 Dim copyIdObj As IDfId
 Dim copySObj As IDfSysObject
 Dim foldObj As IDfFolder
 Dim newFolderId As String
 Dim newFoldObj As IDfFolder
 Dim thisFold As IDfFolder
 Dim emptyDir As Boolean

The structure of the query and while loop used to gather the object Ids of the
objects to copy is similar to those used in the DeepDelete() function in

Chapter 4 – Implementing Core Document Management Functions

138

Section 4.1.2.2, Deep Delete. The object Id in each row of the collection is saved
to a row in the dynamic array, rows(), to be processed later.

 emptyDir = True
 Set q = cx.getQuery
 q.setDQL ("select r_object_id from dm_sysobject where " _
 & "folder(id('" & FromFold.getObjectId.toString _
 & "'))")
 Set col = q.execute(session, DF_READ_QUERY)

 While (col.Next = True)

 ' if array uninitialized, init to 1
 If (emptyDir = True) Then
 ReDim rows(1)
 emptyDir = False
 ' extend array by one
 Else
 ReDim Preserve rows(UBound(rows) + 1)
 End If

 ' put obj id in array
 rows(UBound(rows)) = col.getString("r_object_id")
 Wend
 col.Close

The second section of this subroutine processes the objects selected by the query.
First, each object is fetched from the Docbase. This is an expensive process, but
because we have to fetch each object to copy it anyway, it’s tolerable. After each
object is fetched, it is tested to determine if it is a folder (dm_folder) or not. If
it is, a folder is created in the target location. Then the DeepCopy() subroutine
is called recursively with the current folder and this newly created folder as
arguments. If it is not, the object is copied to the target location.

To create new folders I call a subroutine named dmMkDir() and pass the path of
the folder to create as an argument. dmMkDir() is a subroutine discussed in
Chapter 5, Proven Solutions for Common Tasks. For now, just know that it
creates a folder hierarchy to match the path passed into it, and returns the
r_object_id of the leaf folder it creates.

 ' process array if it was initialized
 If (emptyDir = False) Then
 For i = 1 To UBound(rows)

Chapter 4 – Implementing Core Document Management Functions

139

 ' get the object
 Set sobj = session.GetObject(cx.getId(rows(i)))

 ' if it's a folder...
 If (sobj.getType.getName = "dm_folder") Then

 ' cast it to a folder
 Set thisFold = sobj

 ' create it,
 newFolderId = dmMkDir(session,
 ToFold.getFolderPath(0) _
 & "/" & sobj.getObjectName)
 Set newFoldObj =
 session.GetObject(cx.getId(newFolderId))

 ' and recurse into it
 Call DeepCopy(thisFold, newFoldObj)

If the object being processed is not a folder, it is copied to the toFold location.
The code to copy the object is similar to that discussed in Section 4.1.3, Copying
Objects, and utilizes the IDfSysObject.saveAsNew() method to do the
copy.

 Else

 ' make a copy of object
 Set copyIdObj = sobj.saveAsNew(False)
 Set copySObj = session.GetObject(copyIdObj)

 ' move it
 Set foldObj =
 session.GetObject(copySObj.getFolderId(0))
 copySObj.unlink (foldObj.getFolderPath(0))
 Set foldObj =
 session.GetObject(ToFold.getObjectId)
 copySObj.link (foldObj.getFolderPath(0))

 'save
 copySObj.save
 End If
 Next i
 End If
End Sub

Chapter 4 – Implementing Core Document Management Functions

140

To initiate the DeepCopy() subroutine, use code like this:

Dim from_folder As IDfFolder
Dim to_folder As IDfFolder

Set from_folder =
 session.GetObject(cx.getId("0b00218d8007e3a5"))
Set to_folder =
 session.GetObject(cx.getId("0b00218d8007e294"))

Call DeepCopy(from_folder, to_folder)

Assuming 0b00218d8007e3a5 and 0b00218d8007e294 are the object Ids
of two folders in your Docbase.

4.1.4 Checking Out And Editing Objects

A necessity of any Documentum Desktop application is the ability to check
documents out of the Docbase for editing. The checkout function, as you know it
from using the Documentum Desktop, is actually a combination of actions that
result in the document being locked in the Docbase, its content transferred to your
workstation, and the appropriate editing application invoked. The following code
snippet demonstrates this process in its most basic form.

This snippet relies on the Windows API to determine and execute the default
application for editing the file you check out. To make this happen, the code
appends a DOS extension to the filename when it is transferred from the Docbase
to the workstation. It gets the default DOS extension from the object's associated
IDfFormat object, and appends it to the filename during the execution of the
IDfSysObject.getFile() method. The file is copied to your checkout
directory, as defined in your Documentum registry key. This snippet assumes an
object with object Id of 0900218d80034d35 exists in the Docbase.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Edit" directory of the source code archive.

' Win32 API declares
Public Declare Function GetDesktopWindow Lib "user32" () As Long
Public Declare Function ShellExecute Lib "shell32.dll" Alias _

Chapter 4 – Implementing Core Document Management Functions

141

 "ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As _
 String, ByVal lpFile As String, ByVal lpParameters As _
 String, ByVal lpDirectory As String, ByVal nShowCmd As _
 Long) As Long

Dim sObj As IDfSysObject
Dim Path As String
Dim fmtObj As IDfFormat
Dim regObj As IDfClientRegistry

' fetch the object
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' if its not already checked out, check it out
If (Not sObj.isCheckedOut) Then

 sObj.checkout

 ' if it has content, get it
 If (sObj.getContentSize > 0) Then

 ' make sure the DOS extension is part of filename
 Set fmtObj = sObj.GetFormat

 ' get local checkout path
 Set regObj = cx.getClientRegistry
 Path = regObj.getCheckoutDirectory

 ' put content in the check out dir
 Path = sObj.getFile(Path & "\" & sObj.getObjectName _
 & "." & fmtObj.getDOSExtension)

 ' open in the default application
 ShellExecute GetDesktopWindow(), "open", Path, "", "", 1

 End If
End If

This example is a very basic implementation, but gives you a sense of what is
required to check out and edit an object in the Docbase.

This implementation is hampered because it doesn’t register the checked out files
in the Windows registry. Therefore, it won’t interface correctly with the
Documentum Desktop or other applications that expect checked out files to be
registered in the Windows registry.

Chapter 4 – Implementing Core Document Management Functions

142

4.1.5 Viewing Objects

Viewing an object in the Docbase uses the same logic as checking one out. The
exception is you don’t have to check if the object is already checked out, or call
the IDfSysObject.checkout() method. Other than that, the code is the
same. The same limitations exist for this viewing process as for the checkout
process.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/View" directory of the source code archive.

Dim sObj As IDfSysObject
Dim Path As String
Dim fmtObj As IDfFormat
Dim regObj As IDfClientRegistry

' fetch the object
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' if it has content, get it
If (sObj.getContentSize > 0) Then

 ' get format
 Set fmtObj = sObj.GetFormat

 ' get local checkout path
 Set regObj = cx.getClientRegistry
 Path = regObj.getCheckoutDirectory

 ' get content to the check out dir
 Path = sObj.getFile(Path & "\" & sObj.getObjectName _
 & "." & fmtObj.getDOSExtension)

 ' open in the default application
 ShellExecute GetDesktopWindow(), "open", Path, "", "", 1

End If

4.1.6 Canceling A Checkout

Canceling the checkout of an object reverses any changes you have made to it
locally. The cancel is achieved by calling

Chapter 4 – Implementing Core Document Management Functions

143

IDfSysObject.cancelCheckout() to release the object’s lock in the
Docbase. The code snippet below demonstrates canceling the checkout of an
object and removing the local copy of the file from your hard drive. It assumes
that the checkout directory is the user’s default checkout directory as defined by
the Documentum key in the Windows registry, and that the object’s file name is
the object_name plus the DOS extension. The object I use in this example has
an object Id of 0900218d80034d35.

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Cancel Checkout" directory of the source code archive.

Dim sObj As IDfSysObject
Dim fmtObj As IDfFormat
Dim Path As String
Dim regObj As IDfClientRegistry

Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' cancel checkout
sObj.cancelCheckout

' get local checkout path
Set regObj = cx.getClientRegistry
Path = regObj.getCheckoutDirectory

' get obj format
Set fmtObj = sObj.GetFormat

' remove local file
Kill Path & "\" & sObj.getObjectName & "." _
 & fmtObj.getDOSExtension

4.1.7 Checking In Objects

Programmatically checking objects back into the Docbase is, as you would
expect, just the opposite of checking them out. This code snippet assumes that the
checked out object has an Id of 0900218d80034d35, and is located in your
default Documentum checkout directory on your hard drive.

Chapter 4 – Implementing Core Document Management Functions

144

Source Code A working example of this source code can be found in the "Chapter4/From
Scratch/Checkin" directory of the source code archive.

Dim sObj As IDfSysObject
Dim fmtObj As IDfFormat
Dim Path As String
Dim regObj As IDfClientRegistry

Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' get format object
Set fmtObj = sObj.GetFormat

' get local checkout path
Set regObj = cx.getClientRegistry
Path = regObj.getCheckoutDirectory

' set content type from format object
sObj.setContentType fmtObj.getName

' setfile and checkin
sObj.setFile (Path & "\" & sObj.getObjectName & "." _
 & fmtObj.getDOSExtension)
sObj.checkin False, ""

To save changes to the content as well as the object's attributes, you must connect
the updated file on your hard drive to the object in the Docbase. You do this by
calling IDfSysObject.setFile(). Notice that before I call the
setFile() method, I set the content type of the object with the
IDfSysObject.setContentType() method. This is only necessary if the
IDfSysObject has never had content until now, or if you are changing the type of
its content (e.g., MS Word to WordPerfect, JPG to GIF).

The IDfSysObject.checkin() method performs the following actions:

• Automatically creates a new version of the object in the Docbase,
• Increments the minor version number of the object,
• Transfers the file to the Content Server,
• Saves the new object,
• Removes the object’s lock in the Docbase.

Chapter 4 – Implementing Core Document Management Functions

145

If you want to checkin an object without versioning, use the
IDfSysObject.save() method instead of the
IDfSysObject.checkin() method.

4.2 Implementing Library Functions With
DFC Operation Classes

Now that you have seen some of the logic required to implement the core library
functions, we turn to the Documentum operation classes, which implement this
logic for you. Documentum has generalized the core library functions into the
IDfOperation classes to allow developers to concentrate on solving business
problems instead of the details of implementing these functions. If you browse
the source code for any of the Documentum Desktop components* and you will
see that when it comes to implementing any of these functions, Documentum uses
the IDfOperation classes.

I took the time to discuss and demonstrate how to implement the core library
functions in the previous section without the IDfOperation classes for several
reasons:

• It provided a good introduction to Documentum programming.
• It provided an understanding of how these functions really work and the

effort involved to implement them.
• It will help you appreciate the operation classes.

One of the problems with the code in the previous section is if Documentum
changes any of its objects, methods, or the way the Docbase operates, these
subroutines may break and need to be rewritten. Documentum alleviated this
problem by creating the IDfOperation classes; that way, if and when changes
occur in how the Docbase operates or the DFC works, only these classes need to
be updated.

There are numerous other advantages to using Documentum’s operation classes
instead of creating your own. A few are:

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 4 – Implementing Core Document Management Functions

146

• Take advantage of the years of thought and testing Documentum invested

in these classes.
• You can do more with less code.
• Since these classes are used internally by Documentum, they will be

continually updated (and fixed!) to account for new capability at no cost or
expense to you.

• They allow you to easily work within Documentum’s application
framework.

• They provide hooks into other functionality that is otherwise cumbersome
to create (e.g., abort, undo, progress monitors, error handlers).

• They are all XML-aware, meaning that they can be used to process XML
documents.

By using the IDfOperation classes, you ensure your library functions will always
work–regardless of how complex your content becomes. In addition, you gain the
assurance that you are working within the Documentum application framework,
which will insulate you from future changes in implementation of the Docbase
and the DFC. The Table 4.1 summarizes the Documentum IDfOperation classes.

Table 4.1 - IDfOperation Classes

Operation Class Remark
Delete IDfDeleteOperation The delete operation deletes

objects from the Docbase,
including deep folder
structures and virtual
documents, and updates the
Windows registry.

Copy IDfCopyOperation The copy operation copies
objects in the Docbase from
one location to another,
including deep folder
structures and virtual
documents.

Chapter 4 – Implementing Core Document Management Functions

147

Operation Class Remark
Checkout IDfCheckoutOperation The checkout operation

locks objects in the
Docbase, exports content to
the client for manipulation,
and updates the Windows
registry.

Checkin IDfCheckinOperation The checkin operation
releases the Docbase lock,
imports updated content and
attribute data, and updates
Windows registry entries.

CancelCheckout IDfCancelCheckoutOperation The cancel checkout
operation releases the
Docbase lock, deletes the
local content file, and
updates Windows registry
entries.

Import IDfImportOperation The import operation
imports new content into the
Docbase.

Export IDfExportOperation The export operation
exports content from the
Docbase to the local file
system.

Move IDfMoveOperation The move operation moves
objects in the Docbase from
one location to another.

Transform IDfXMLTransformOperation The transform operation
performs XSL
transformations on XML
documents.

Validate IDfValidationOperation The validate operation
performs XML validations
on XML documents.

Chapter 4 – Implementing Core Document Management Functions

148

To provide contrast, this section will discuss the same core library functions as the
previous section. Additionally, I will discuss how to use the progress bar and how
to process an aborted operation–things not easily achieved without these classes.

4.2.1 Overview Of Using Operations

Each operation class contains methods and attributes specific to a particular
operation (e.g., checkin, checkout). Although each class performs a different
operation, they all work in generally the same way. The basic process for using
an operation class is:

• Instantiate object–instantiate an interface class for the particular operation
you want to implement, usually through the DfClientX factory class.

• Populate object–populate the object with the necessary data and set
execution options.

• Execute–run the operation.
• Check errors–check for execution errors.
• Process results–process the results of the operation for additional error

checking, undo requests, or abort requests.

In code, this generic process might look like this (note the use of XXX where
specific operation names should be used):

Dim opObj As IDfXXXOperation
Dim sObj As IDfSysObject
Dim retVal As Boolean
Dim i As Integer

' get operation obj
Set opObj = cx.getXXXOperation

' get sysobj
Set sObj = session.GetObject(cx.getId("0900218d8003d538"))

' add object to operation
opObj.Add sObj

' do operation
retVal = opObj.execute

' check for errors

Chapter 4 – Implementing Core Document Management Functions

149

For i = 0 To (opObj.getErrors.getCount - 1)
 MsgBox opObj.getErrors.getString(i), vbCritical, _
 "Operation Error"
Next I

The following sections look at the specific implementation of this process for
each operation class.

4.2.2 Creating And Viewing Objects

As you may have noticed in Table 4.1, there are no IDfOperation classes for
creating or viewing objects in the Docbase. These functions remain in the realm
of custom code as demonstrated previously in Sections 4.1.1, Creating Objects,
and 4.1.5, Viewing Objects, respectively.

4.2.3 Deleting Objects

The following code snippet implements the same deep delete functionality as
demonstrated in Section 4.1.2.2, Deep Delete. You will notice it is a lot less
complicated to implement using the IDfDeleteOperation class.

First, the delete operation is instantiated. Next, the object to delete is fetched
from the Docbase (in this case a dm_folder object with Id of
0b00218d8007e237) and added as a node to the delete operation object.
Notice the object is added to the operation class, not just its Id. Finally, the
operation is executed and queried for errors.

Source Code A working example of this source code can be found in the
"Chapter4/Operations/ Delete" directory of the source code archive.

Dim opObj As IDfDeleteOperation
Dim sObj As IDfSysObject
Dim retVal As Boolean
Dim i As Integer

' get op obj
Set opObj = cx.getDeleteOperation

' get obj to delete

Chapter 4 – Implementing Core Document Management Functions

150

Set sObj = session.GetObject(cx.getId("0b00218d8007e237"))

' add object to operation
opObj.Add sObj

' do operation
retVal = opObj.execute

' check for errors
For i = 0 To (opObj.getErrors.getCount - 1)
 MsgBox opObj.getErrors.getString(i), vbCritical, "Delete " _
 & "Error"
Next i

By default, the delete operation class implements a deep delete. I think you will
agree, this code is significantly less complex than the DeepDelete() function
discussed in Section 4.1.2.2, Deep Delete. In addition, this deep delete
automatically handles XML and virtual documents, something the previous code
did not.

4.2.4 Copying Objects

This code snippet implements the copy operation using the IDfCopyOperation
class. The structure and function of the code is nearly identical to the
IDfDeleteOperation class discussed in Section 4.2.3, Deleting Objects, except for
one detail: the IDfCopyOperation class requires the destination folder to be
identified and added to the operation. The copy operation class implements a
deep copy by default. In addition, it can also handle XML and virtual documents.
In this example, I copy an object with Id of 0900218d8003d538 to a folder
with Id of 0b0023eb80002f17.

Source Code A working example of this source code can be found in the
"Chapter4/Operations/ Copy" directory of the source code archive.

Dim opObj As IDfCopyOperation
Dim sObj As IDfsysObject
Dim retVal As Boolean
Dim i As Integer

' get op obj
Set opObj = cx.getCopyOperation

Chapter 4 – Implementing Core Document Management Functions

151

' get obj to copy
Set sObj = session.GetObject(cx.getId("0900218d8003d538"))

' setup operation
opObj.Add sObj
opObj.setDestinationFolderId cx.getId("0b0023eb80002f17")

' do operation
retVal = opObj.execute

' check for errors
For i = 0 To (opObj.getErrors.getCount - 1)
 MsgBox opObj.getErrors.getString(i), vbCritical, "Copy Error"
Next i

4.2.5 Checking Out And Editing Objects

The following code snippet implements the same checkout functionality as
demonstrated in the Section 4.1.4, Checking Out and Editing Objects, but uses the
IDfCheckoutOperation class. However, to edit the checked out object, it relies on
the same Win32 API code.

Source Code A working example of this source code can be found in the "Chapter4
/Operations/Edit" directory of the source code archive.

' Win32 API declares
Public Declare Function GetDesktopWindow Lib "user32" () As Long
Public Declare Function ShellExecute Lib "shell32.dll" Alias _
 "ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As _
 String, ByVal lpFile As String, ByVal lpParameters As _
 String, ByVal lpDirectory As String, ByVal nShowCmd As _
 Long) As Long

Dim opObj As IDfCheckoutOperation
Dim sObj As IDfSysObject
Dim retVal As Boolean
Dim i As Integer

' get op obj
Set opObj = cx.getCheckoutOperation

' get obj to checkout
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

Chapter 4 – Implementing Core Document Management Functions

152

' setup operation
opObj.Add sObj

' get local checkout path
Set regObj = cx.getClientRegistry
opObj.setDestinationDirectory regObj.getCheckoutDirectory

' do operation
retVal = opObj.execute

' check for errors
For i = 0 To (opObj.getErrors.getCount – 1)
 MsgBox opObj.getErrors.getString(i), vbCritical, "Checkout" _
 & " Error"
Next i

' open files in editor
For i = 0 To (opObj.getRootNodes.getCount - 1)
 ShellExecute GetDesktopWindow(), "open", _
 opObj.getRootNodes.get(i).getFilePath, "", "", 1
Next i

Again, this code follows the same general implementation pattern as the
IDfOperation classes discussed previously. The notable exception is the use of
the setDestinationDirectory() method to identify where the checkout
object should reside on the client computer. In this case, I use the default
Documentum checkout directory as defined in the Windows registry.

The IDfCheckoutOperation object in this example does all of the following
actions for you:

• Obtains the Docbase lock on the object (If the object is a virtual document
or an XML document, it obtains locks for all of the object’s parts).

• Avoids file system collisions by constructing a unique file name.
• Transfers the object’s content to the your workstation.
• Updates the Windows registry to include the object's Id, filename, and

checkout directory.

The only thing the checkout operation does not do is launch the file’s native
editor. You still have to launch the appropriate application yourself; thus, the use
of the Win32 API method, ShellExecute() and GetDesktopWindow().

Chapter 4 – Implementing Core Document Management Functions

153

4.2.6 Canceling Checkout Of Objects

The cancel checkout operation does more than just release the Docbase lock on
the checked out object. It reverses the entire checkout process by releasing the
lock, updating the Windows registry, and removing the local file. It is
implemented similarly to the checkout operation, as the code snippet below
illustrates. This example assumes an object with an Id of 0900218d80034d35
was previously checked out.

Source Code A working example of this source code can be found in the
"Chapter4/Operations/ Cancel Checkout" directory of the source code archive.

Dim opObj As IDfCancelCheckoutOperation
Dim sObj As IDfSysObject
Dim retVal As Boolean
Dim i As Integer

' get op obj
Set opObj = cx.getCancelCheckoutOperation

' get obj to cancel checkout
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' setup operation
opObj.Add sObj
opObj.setKeepLocalFile False

' do operation
retVal = opObj.execute

' check for errors
For i = 0 To opObj.getErrors.getCount - 1
 MsgBox opObj.getErrors.getString(i), vbCritical, "Cancel " _
 & "Checkout Error"
Next i

Simple and clean, the IDfCancelCheckoutOperation class provides a lot of power
for very little code. One nice feature of the cancel checkout operation, is it can
remove the local copy of the file from the user's computer simply by passing
False to the setKeepLocalFile() method. The
IDfCancelCheckoutOperation class can do this by scanning the Windows registry
for the key written there by the IDfCheckoutOperation class. Once it finds the
key, it can determine where the file resides on the hard drive and delete it. This

Chapter 4 – Implementing Core Document Management Functions

154

small feature points to one large drawback to the "from scratch" functions
implemented in the first half of this chapter: they did not use the Windows
registry to communicate among operations.

4.2.7 Checking In Objects

Checking in objects using the IDfCheckinOperation class is just as easy as
checking them out. This code snippet checks in the object as the next minor
version, and removes the local copy of the file. This example assumes an object
with an Id of 0900218d80034d35 was previously checked out.

Source Code A working example of this source code can be found in the
"Chapter4/Operations/ Checkin" directory of the source code archive.

Dim opObj As IDfCheckinOperation
Dim sObj As IDfSysObject
Dim retVal As Boolean
Dim i As Integer

' get op obj and cast it
Set opObj = cx.getCheckinOperation

' get obj to checkin and cast it
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' setup operation
opObj.Add sObj
checkinOp.setKeepLocalFile False
checkinOp.setCheckinVersion 1 ' NEXT MINOR VERSION

' do operation
retVal = opObj.execute

' check for errors
For i = 0 To (opObj.getErrors.getCount - 1)
 MsgBox opObj.getErrors.getString(i), vbCritical, "Checkin " _
 & "Error"
Next i

The checkin operation creates a new version of the object in the Docbase,
transfers the content file (If the object was a virtual document or an XML
document, it transfers all of the object’s parts.), updates the Windows registry,

Chapter 4 – Implementing Core Document Management Functions

155

and releases the Docbase lock. Again, because of the operation's use of the
Windows registry, it is not necessary to indicate which file on the hard drive to
transfer back to the Documentum Server, it already knows.

4.2.8 Implementing An Operation Monitor

One exciting feature of the IDfOperation classes is their ability to integrate with
the operation monitor class, IDfOperationMonitor. The operation monitor is a
Documentum Desktop UI class. It provides user feedback and the ability to abort
an operation during its execution. When an operation monitor object is used with
an IDfOperation, the operation monitor automatically shows and updates itself
during the execution of the operation. The UI and functionality of the operation
monitor is predefined, but somewhat configurable. Figure 4.1 shows a typical
operation monitor in action.

Figure 4.1 - Example of IDfOperationMonitor

The following code snippet demonstrates how to add an operation monitor to the
checkout operation previously discussed in Section 4.2.5, Checking Out and
Editing Objects. That code is repeated here for context with the operation
monitor code shown in bold typeface. Note that you need to add a reference in
your project for the Documentum Progress Monitor Component 1.0 Type Library
to use this code.

Source Code A working example of this source code can be found in the
"Chapter4/Operations/ Operation Monitor" directory of the source code
archive.

' Win32 API declares
Public Declare Function GetDesktopWindow Lib "user32" () As Long

Chapter 4 – Implementing Core Document Management Functions

156

Public Declare Function ShellExecute Lib "shell32.dll" Alias _
 "ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As _
 String, ByVal lpFile As String, ByVal lpParameters As _
 String, ByVal lpDirectory As String, ByVal nShowCmd As _
 Long) As Long

Dim opObj As IDfCheckoutOperation
Dim progressMonitor As New DcProgressMonitor
Dim opMonitor As IDfOperationMonitor
Dim sObj As IDfSysObject
Dim retVal As Boolean
Dim i As Integer
Dim regObj As IDfClientRegistry

' get op obj
Set opObj = cx.getCheckoutOperation

' get obj to checkout
Set sObj = session.GetObject(cx.getId("0900218d800c2fde"))

' setup operation
opObj.Add sObj

' get local checkout path
Set regObj = cx.getClientRegistry
opObj.setDestinationDirectory regObj.getCheckoutDirectory

After instantiating the progress monitor, cast it to an operation monitor and install
it in your operation. Then start() the monitor before you execute() the
operation, and stop() it afterward. The operation object and the operation
monitor object take care of the necessary synchronization.

' setup the progress monitor
progressMonitor.Delay = 0
progressMonitor.StopEnabled = True

' cast and install the progress monitor
Set opMonitor = progressMonitor
Call opObj.setOperationMonitor(opMonitor)

' start monitor
Call progressMonitor.start(GetDesktopWindow)

' do operation
retVal = opObj.execute

Chapter 4 – Implementing Core Document Management Functions

157

' stop monitor
Call progressMonitor.Stop

' check for errors
For i = 0 To opObj.getErrors.getCount - 1
 MsgBox opObj.getErrors.getString(i), vbCritical, "Checkout" _
 & " Error"
Next i

' open files in editor
For i = 0 To (opObj.getRootNodes.getCount - 1)
 ShellExecute GetDesktopWindow(), "open", _
 opObj.getRootNodes.get(i).getFilePath, "", "", 1
Next i

In addition to providing a nice feedback mechanism, the operation monitor also
provides the ability to abort an operation, as discussed next.

4.2.9 Processing An Operation Abort

Another advantage of using an operation monitor with an IDfOperation class is it
allows users to abort and undo operations. For example, in Figure 4.1, if the user
clicks the Stop button on the operation monitor UI, an abort request is registered
with the underlying Operation object, and the Operation object halts the execution
of the operation. With the addition of a few lines of code, you can undo the
operation and return the Docbase and/or the content objects to their previous state.
The only additional code necessary to implement this feature is that which
processes the abort request. The following code snippet demonstrates how to add
this code to the code snippet discussed in Section 4.2.8, Implementing An
Operation Monitor. That code is repeated here for context with the abort code
shown in bold typeface.

Source Code A working example of this source code can be found in the
"Chapter4/Operations/ Operation Monitor" directory of the source code
archive.

' Win32 API declares
Public Declare Function GetDesktopWindow Lib "user32" () As Long
Public Declare Function ShellExecute Lib "shell32.dll" Alias _
 "ShellExecuteA" (ByVal hwnd As Long, ByVal lpOperation As _
 String, ByVal lpFile As String, ByVal lpParameters As _
 String, ByVal lpDirectory As String, ByVal nShowCmd As _

Chapter 4 – Implementing Core Document Management Functions

158

 Long) As Long

Dim opObj As IDfCheckoutOperation
Dim progressMonitor As New DcProgressMonitor
Dim opMonitor As IDfOperationMonitor
Dim sObj As IDfSysObject
Dim opProperties As IDfProperties
Dim retVal As Boolean
Dim i As Integer
Dim regObj As IDfClientRegistry

' get op obj
Set opObj = cx.getCheckoutOperation

' get obj to checkout
Set sObj = session.GetObject(cx.getId("0900218d800c2fde"))

' setup operation
opObj.Add sObj

' get local checkout path
Set regObj = cx.getClientRegistry
opObj.setDestinationDirectory regObj.getCheckoutDirectory

' setup the progress monitor
progressMonitor.Delay = 0
progressMonitor.StopEnabled = True

' cast and install the progress monitor
Set opMonitor = progressMonitor
Call opObj.setOperationMonitor(opMonitor)

' start monitor
Call progressMonitor.start(GetDesktopWindow)

' do operation
retVal = opObj.execute

' stop monitor
Call progressMonitor.Stop

The code to check for the abort request is placed after the
IDfOperation.execute() method call. When the user aborts the
operation, the IDfOperation.execute() method returns and the code
continues running from that point. The fact that an abort request occurred is only
captured in the operation's property object, so you must query that object for the

Chapter 4 – Implementing Core Document Management Functions

159

presence of an IDfOperation.AbortRequested property. If it exists, a
call to the IDfOperation.abort() method takes care of reversing the
operation and all of the clean up.

' get operation properties
Set opProperties = opObj.getProperties()

' process abort event
If (opProperties.containsProperty("AbortRequested")) Then
 Call opObj.abort
End If

' check for errors
For i = 0 To opObj.getErrors.getCount - 1
 MsgBox opObj.getErrors.getString(i), vbCritical, "Checkout" _
 & " Error"
Next i

' open files in editor
For i = 0 To (opObj.getRootNodes.getCount - 1)
 ShellExecute GetDesktopWindow(), "open", _
 opObj.getRootNodes.get(i).getFilePath, "", "", 1
Next i

The addition of the operation monitor to your application will give it a polished
and professional look. In addition, the ability to process abort requests and undo
operations will further add to your application's usability.

4.3 Chapter Summary
This chapter introduced you to seven core library functions: create, delete, copy,
checkout, view, cancel checkout, and checkin. These functions are essential to
any document management system and its clients, so you can expect to implement
them frequently. The first part of the chapter examined implementing these
functions "from scratch", meaning each step of the processing logic had to be
thought out and implemented using basic DFC classes and queries.

The second half of the chapter demonstrated how to implement the same
functions using the IDfOperation classes. These classes allow developers to
concentrate on solving business problems instead of the details of implementing
these functions. Using the IDfOperation classes to implement the core library

Chapter 4 – Implementing Core Document Management Functions

160

functions give you many benefits, not the least of which is the ability to use the
operation monitor. The operation monitor is a UI class, which integrates with the
IDfOperation classes to provide user feedback during an operation as well as the
opportunity for the user to cancel the operation. Other benefits of the
IDfOperation classes include better integration with other Documentum-aware
products by recording actions in the Windows registry, insulation from future
changes in Documentum architecture, and the ability to handle XML and virtual
documents.

Chapter 5 – Proven Solutions for Common Tasks

161

5
5 Proven Solutions For

Common Tasks
This chapter presents a variety of proven solutions for common tasks. These
solutions are implemented frequently, because no matter the purpose of the
application, solutions to these common tasks are required. I think of these
solutions as staples of the trade, and this chapter contains more than a dozen of
them I have collected over the years.

Unlike previous chapters that focused on single topics with sections of related
information, this chapter is composed of many unrelated topics. For example,
previous chapters were devoted to queries and collections, and core library
functions. This chapter discusses topics ranging from logging in and auditing, to
creating paths in the Docbase and Dump and Load. These solutions provide real,
value-added functionality to applications and are techniques you need to be
familiar with.

The techniques presented in this chapter fall into four broad categories:

Chapter 5 – Proven Solutions for Common Tasks

162

• DFC programming techniques and best practices,
• Debugging and auditing techniques,
• Interfacing with resources outside of Documentum,
• Automating things inside the Docbase.

5.1 Login Using The DFC
The first task any Documentum application or component must accomplish is
logging in. The following code snippet illustrates this process in its most basic
form..

First, an IDfLoginInfo object is obtained from the IDfClientX object, and
populated with a username and password. These values can be hard coded, as in
this example, or obtained from the user. The IDfLoginInfo object is then passed
to the IDfClient.newSession() method, along with the Docbase name, to
login and establish a session. If an error occurs, the
IDfClient.newSession() method raises an exception and Visual Basic
displays an error message. There is no need to specifically code an error message
for a failed login using this technique.

Source Code A working example of this source code can be found in the "Chapter5/DFC
Login" directory of the source code archive.

Dim cx As DfClientX
Dim client As IDfClient
Dim session As IDfSession
Dim li As IDfLoginInfo

Set cx = New DfClientX
Set client = cx.getLocalClient
Set li = cx.getLoginInfo

li.setUser ("username")
li.setPassword ("password")

Set session = client.newSession("docbase", li)

If (session Is Nothing) Then
 End
End If

Chapter 5 – Proven Solutions for Common Tasks

163

This is a very simple login technique and is particularly useful in applications that
do not prompt the user to login, for example, server methods.

5.2 Login Using The Login Manager
Using the IDfLoginInfo class, as explained above, is fine for applications that
don't require direct user input to login. However, if your application requires
users to provide a username and password, use the Login Manager to manage the
login process. Using the Login Manager makes obtaining and managing sessions
easier than with custom code. The Login Manager provides a standard and
consistent UI (see Figure 5.1) for logging in, as well as a comprehensive set of
rules and methods for obtaining and managing sessions, including "silent logins"
or Windows trusted Logins. The Login Manager is the preferred technique for
interactive logins.

Figure 5.1 - Login Manager UI

Using the Login Manager is simple: instantiate one and call the Connect()
method. For Example:

Dim sessionId As String
Dim loginMgr As New DcLoginManager

sessionId = loginMgr.Connect("docbase", "username", _
 "password", "domain", ConnectFlag)

Chapter 5 – Proven Solutions for Common Tasks

164

The combination of variables passed to the Connect() method affect how the
login is performed and what options are available in the UI. These variable
combinations work as follows:

Docbase and User Name Provided:

1. The Login Manager determines if a session already exists for the given
docbase and username (the domain is assumed). If a session
exists, its Id is returned, otherwise, the process continues.

2. The Login Manager tries to match the username and the domain with a
profile in the Authentication Manager. The Authentication Manager is a
part of the Documentum Desktop that runs silently in the background and
coordinates the authentication of users with the OS. If a match is made,
the Authentication Manager returns an encrypted password to the Login
Manager, which logs in and returns a session Id. If no match is found, the
process continues.

3. The Login Manager determines if a session for docbase exists under a
different user’s name. If it does, the Login Manager prompts the user that
he will be disconnected from all Docbases by making this connection. If
the user chooses to proceed, Login Manager returns a session Id,
otherwise, the process continues.

4. The login UI is displayed and the user must provide a docbase,
username, password, and domain (optional).

Only Docbase Name Provided:

1. The Login Manager determines if a session already exists for the
Docbase, the username is not important. If a session exists, its Id is
returned, otherwise, the process continues.

2. The Login Manager attempts to retrieve the current user's profile from the
Authentication Manager, login silently, and return the session Id. If no
profile exists, the process continues.

3. The login UI is displayed and the user must login by providing
username, password, and domain (optional).

Only Home Docbase Name Provided:

1. The Login Manager retrieves the Home Docbase name from the
Authentication Manager. If the Home Docbase name passed into the
Login Manager matches the Home Docbase name retrieved from the
Authentication Manager:

Chapter 5 – Proven Solutions for Common Tasks

165

a. If a username is provided, use the same process as Docbase and
User Name Provided, beginning at step 1.

b. If no username is provided, use the same process as Docbase
and User Name Provided, beginning at step 2.

2. If the Home Docbase name passed into the Login Manager is blank or
does not match the Home Docbase name retrieved from the Authentication
Manager, then the process continues.

3. The login UI is displayed and the user must login by providing docbase,
username, password, and domain (optional).

No Parameters Provided:

1. The login UI is displayed and the user must login by providing docbase,
username, password, and domain (optional).

The last argument in the DcLoginManager.Connect() method signature is
the ConnectFlag. This argument is an integer value (usually defined as a
constant) that adds additional constraints to how the session is established. Table
5.1 describes these values.

Table 5.1 - Login Manager ConnectFlag Values

Constant Name Value Purpose
DOCBASE_IS_READ_ONLY 1 Forces the Docbase combo box on the

Login Manager UI to be disabled.
HOME_DOCBASE_TITLE 2 Forces the user to login to their Home

Docbase.
IS_DOCBASE_CONNECTED 4 If a session has been previously

established, this flag instructs the Login
Manager to return the session Id of that
session.

USER_IS_READ_ONLY 8 Forces the User field on the Login
Manager UI to be disabled.

DO_UNIFIED_LOGIN 16 Instructs the Login Manager to perform
a Windows Trusted Login, which will
attempt to login to the Docbase using
the user's current Windows credentials.

Chapter 5 – Proven Solutions for Common Tasks

166

Constant Name Value Purpose
DOCBASE_CHOOSER 32 Forces the Login Manager into

Docbase chooser mode, allowing only
the selection of a Docbase. All other
flags are ignored.

 0 Forces the Login Manager into its
default behavior. The default behavior
is:

• look for an existing session
(IS_DOCBASE_CONNECTED),

• attempt a silent login
(DO_UNIFIED_LOGIN),

• finally, display the Login
Manager UI.

The following code snippet demonstrates using the Login Manager to connect to a
Docbase, obtain a session, and disconnect. Your project must reference the
Documentum Login Manager Type Library to use this code.

Source Code A working example of this source code can be found in the
"Chapter5/LoginMgr" directory of the source code archive.

Dim loginMgr As New DcLoginManager
Dim cx As DfClientX
Dim client As IDfClient
Dim session As IDfSession
Dim sessionId As String

' if no session, login
If (sessionId = "") Then
 sessionId = loginMgr.Connect("", "", "", "", 0) ' force GUI
End If

' if still no session, error out
If (sessionId = "") Then
 MsgBox "Could not Login.", vbCritical, "Could Not Login"
 Set loginMgr = Nothing
 End
Else
 ' set up dfc
 Set cx = New DfClientX
 Set client = cx.getLocalClient

Chapter 5 – Proven Solutions for Common Tasks

167

 Set session = client.findSession(sessionId)
End If

' program code here. . .

' disconnect with login mgr
loginMgr.disconnect(sessionId)
Set loginMgr = Nothing

Notice passing the DcLoginManager.Connect() method empty strings and
a ConnectFlag of zero will always force the Login Manager to display the
login UI. If you would prefer to pre-populate some of the arguments and use a
different ConnectFlag, you can use any number of techniques to obtain these
values from the operating system.

To make the best use of the Login Manager, declare it and the sessionId
variable global to the main module in your application. This ensures that both
exist throughout the life of the application, and makes it easier to manage the
session. The DfClientX, IDfClient, and IDfSession variables should be defined
locally on each form where they are required.

When you connect to a Docbase using the Login Manager, it returns a session Id
string for a shared DFC session. A shared session can be used by any component
in the same process as the Login Manager. Thus, you can pass it to forms and
other objects. The caveat is that each process must lock and unlock the session
when used to prevent collisions. Passing session Ids to forms and session locking
are both discussed later in this chapter.

It's important to remember that if you connect to the Docbase using the Login
Manager, you must disconnect from the Docbase using the Login Manager.
Directly disconnecting a session established with the Login Manager can cause
instability in your application.

As wonderful as the Login Manager is, it still leaves you with a session that you
must manage throughout the life of your application. This management entails
passing the session to forms and functions, as well as explicitly locking it during
Docbase operations. These tasks are not difficult to implement, and will be
discussed later in this chapter.

Chapter 5 – Proven Solutions for Common Tasks

168

5.3 Passing A Session To A Form
Most applications consist of more than one form, and most of those forms interact
with the Docbase. Therefore, each form must have access to the session. The
best way to give a form access to the session is by passing it the session Id (not
the session object) and requiring each form to instantiate its own DfClientX,
IDfClient, and IDfSession objects.

This may not seem like an obvious best practice so let's take a closer look. More
than likely, each form will require access to the session or access to the DFC
client objects (DfClientX and IDfClient). Since passing objects among forms
runs counter to Microsoft best practice, the only options left are: declare the
objects global to the application, or instantiate them locally on each form.
Declaring the objects global to the application and having each form reach back to
the main module to access them is not good programming style and ruins many of
the modular and reuse aspects of your code. Therefore, the only option left is to
instantiate the objects locally on each form. Though instantiation of these objects
does consume overhead, it's not too bad, and the localization of the objects helps
to scope and modularize your code.

You saw a preview of this technique in Chapter 2, Getting Started with
Applications and Components. The following code snippets illustrate this idea in
more detail. These code snippets assume you have a form in your application
named aForm that has a public string variable named sessionId. It also
assumes the session identifier (returned by the Login Manager) is named
sessionId.

The calling code looks like this:

Source Code A working example of this source code can be found in the
"Chapter5/Passing Session Id" directory of the source code archive.

Dim theForm As New aForm

' pass session Id to form
theForm.sessionId = sessionId

' show form
theForm.Show vbModal

Chapter 5 – Proven Solutions for Common Tasks

169

The form code looks like this:

' FORM

' passed in
Public sessionId As String

' global to form
Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession

Sub Form_Load()

' this code is usually in the Form_Load method
' to insure it runs first

' set up dfc client vars
Set cx = New DfClientX
Set client = cx.getLocalClient
Set session = client.findSession(sessionId)

' other code

End Sub

It is best to define the DfClientX, IDfClient, and IDfSession objects globally for
the form since nearly all of the form's methods will require access to them. To
ensure the DfClientX, IDfClient, and IDfSession objects are instantiated first, put
their initialization code in the Form_Load() subroutine.

As mentioned previously, passing session Ids to forms as strings and instantiating
the DFC client objects locally, as demonstrated here, is a Documentum best
practice. Passing the session to a form as an IDfSession object is not
recommended.

5.4 Session Locking
Shared sessions are great. Using them avoids every process in your application
having to establish its own session with the server and consuming memory and

Chapter 5 – Proven Solutions for Common Tasks

170

resources. They also facilitate data sharing since each process uses the same
DMCL cache. However, because they are shared, they require careful
management to avoid processes from colliding while accessing the Docbase. To
keep processes from clashing over session access, have each process exclusively
lock the session before reading data from, or writing data to, the Docbase, and
unlock it as soon as the operation is completed.

The easiest way to achieve session locking is to use the DcSessionLock class in
your application. Unlike other DFC classes, this one is not packaged as a .DLL
that must be referenced in your Visual Basic project. Instead, DcSessionLock is a
Visual Basic class file that must be added to the project as part of the source code.
The DcSessionLock.cls file is found in the Documentum Desktop
Component Source archive*. This class makes session locking easy: simply
instantiate a DcSessionLock object, and call its two methods, GetLock() and
ReleaseLock() as appropriate. Your Visual Basic project must reference the
Documentum Desktop Client Utilities Manager Type Library because the
DcSessionLock class uses it. The following code snippet demonstrates the use of
the DcSessionLock class.

Source Code A working example of this source code can be found in the
"Chapter5/Session Lock" directory of the source code archive.

Dim sessionLock As DcSessionLock
Dim sObj As IDfSysObject

Set sessionLock = New DcSessionLock

sessionLock.GetLock session, True, "Lock 1"

Set sObj = session.GetObject(cx.getId("0900218d8000d145"))
sObj.setTitle ("Testing 1,2,3")
sObj.save

sessionLock.ReleaseLock

The GetLock() method requires three arguments:

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 5 – Proven Solutions for Common Tasks

171

• The session as an IDfSession object,
• True or False, indicating if tracing should be used,
• The context string to write to the trace file.

DcSessionLock objects should be defined as needed and not globally. I
recommend not creating a global DcSessionLock object, but rather instantiating
one whenever a session lock is needed. There is no advantage to instantiating one
global object and reusing it throughout your application. By instantiating a new
one each time it is needed, you can pass a new context string and more easily
manage the locks, the lock objects, and debug problems. As long as the same
IDfSession object is passed to the DcSessionLock object, the same session will be
locked.

The DcSessionLock class is useful; however, if a session cannot be locked, the
GetLock() method just returns False instead of retrying. To remedy this
problem, I wrote the lockSession() function below that wraps the
GetLock() method.

Source Code A working example of this source code can be found in the "Chapter5/Lock
Session" directory of the source code archive.

Function lockSession(session As IDfSession, context As String) As
 DcSessionLock

 Dim sessLock As New DcSessionLock
 Dim locked As Boolean

 locked = False

 ' Lock the session. Keep trying until successful
 While (locked = False)
 locked = sessLock.GetLock(session, True, context)
 If (locked = False) Then
 Debug.Print "Sleeping. . ."
 sleep (1)
 End If
 Wend

 Set lockSession = sessLock
 Set sessLock = Nothing

End Function

Chapter 5 – Proven Solutions for Common Tasks

172

The lockSession() function requires two arguments:

• The session as an IDfSession object,
• The context string to write to the trace file.

The function instantiates a DcSessionLock object and calls its GetLock()
method. However, if it fails to achieve a lock, the subroutine sleeps for one
second and tries again. This will continue indefinitely until the lock is achieved.
In most cases, this is the behavior you want your code to exhibit. It may seen
dangerous to loop indefinitely waiting for a lock, but since most applications and
components are synchronous, there is minimal risk that another section of your
code will be locking the session at the same time. Using this function saves you
the time and effort of implementing similar logic every time you try to lock a
session, and centralizes the instantiation of all DcSessionLock objects.

Note this function utilizes a function named sleep() when it cannot establish a
lock. The sleep() function does exactly what its name suggests: sleep. The
specifics of the sleep() function are discussed in the next section.

Using the lockSession() function, the previous example now looks like this:

Source Code A working example of this source code can be found in the "Chapter5/Lock
Session" directory of the source code archive.

Dim sessionLock As DcSessionLock
Dim sObj As IDfSysObject

Set sessionLock = lockSession(session, "Lock 1")

Set sObj = session.GetObject(cx.getId("0900218d8000d145"))
sObj.setTitle ("Testing 1,2,3")
sObj.save

sessionLock.ReleaseLock

Chapter 5 – Proven Solutions for Common Tasks

173

5.5 A Non-blocking Visual Basic sleep()
Function

It’s not often that you want to slow down the execution of your program or
perform a no-op, but sometimes it is necessary. I can think of two instances when
this might be useful. The first is when you are waiting for a process to complete.
For example, the QueryManager, discussed in Chapter 3, Working with Queries
and Collections, and the Sentinel, discussed later in this chapter, both require the
main program to wait for them to complete (or be cancelled) before continuing.
The lockSession() function, discussed in the previous section, also needs to
sleep() while waiting for the session to become available. The second
instance when a sleep() might be used is between screen transitions when a lot
of processing is required to paint the screen. For example, I often sleep() for a
second between establishing a successful login using the Login Manager, and
presenting the application's main screen. This gives the Login Manager a chance
to hide itself, and the main screen time to paint itself. In both of these cases, it is
imperative that the sleep() function is non-blocking, that is, it allows other
processes to continue in the background while it does nothing.

Visual Basic does not have a non-blocking sleep() function, nor does the
Win32API. The sleep() function that follows is non-blocking and is the one I
use when I need a process to wait.

Source Code A working example of this source code can be found in the
"Chapter5/Sleep" directory of the source code archive.

Sub sleep(t As Integer)
 Dim EndTime As Date

 EndTime = DateAdd("s", t, Now)
 Do Until Now > EndTime
 DoEvents
 Loop

End Sub

Note the DoEvents() function inside the Do Loop, it is the key to the whole
thing. The DoEvents() function relinquishes control back to the operating

Chapter 5 – Proven Solutions for Common Tasks

174

system and the application to process other events. This is what makes the
function non-blocking.

Using the sleep() function is simple: call the function and provide the number
of seconds to sleep as the argument. For example:

' sleep for one second
sleep(1)

' sleep for ten seconds
sleep(10)

Note you can only sleep for integer durations, that is, you can't sleep for 0.5
seconds.

5.6 Running Documentum Components
There are times when it is necessary to run a Documentum component from your
application or from another component. This is similar to how the Documentum
Desktop checkin component runs the Properties component when the Properties
button is clicked. You might face this situation if you write a custom checkin
component that forces the user to enter mandatory attributes before proceeding
with a checkin. In this case, your component would run the Documentum checkin
component after validating that the mandatory attributes were filled.

Whenever you run a component, use the Component Dispatcher,
DcComponentDispatcher. You should never directly call the Init(),
Run(), and DeInit() methods on the component, though you are able.
Documentum components should always be called via the Component
Dispatcher; otherwise, you bypass DART, the Cabinet Manager, and all the other
features that Documentum provides for component delivery. See Chapter 2,
Getting Started with Applications and Components for more a detailed discussion
about the Component Dispatcher and DART.

To run a component, use the
DcComponentDispatcher.RunComponent() method. This method
requires ten arguments:

Chapter 5 – Proven Solutions for Common Tasks

175

rv = compDispatcher.runComponent(functionalClass, _
 ApplicationName, _
 docbaseName, _
 userOSName, _
 domain, _
 items, _
 hWndForDialog, _
 reporter, _
 StringForIID, _
 itemContainer)

The purpose of each input argument is discussed in Table 5.2.

Table 5.2 - DcComponentDispatcher.RunComponent() Input Arguments

No. Name Type Comment
1. functionalClass String Name of the component to run.
2. applicationName String This is the name of the DocApp

containing the component. If this
argument is left blank,
RunComponent() will search
the default DocApp for the
functionalClass.

3. docbaseName String Name of the Docbase containing
the component.

4. userOSName String Name of the user to run the
component.

5. domain String Name of the user’s domain. This
variable can be left blank and
RunComponent() will assume
the default domain.

6. Items DcItems This is the collection of objects
passed into the component.
Usually, the component operates
on the objects in this collection.
The component may also update or
add to the objects in this collection
and return it to the calling
application.

Chapter 5 – Proven Solutions for Common Tasks

176

No. Name Type Comment
7. hWndForDialog Long The handle for the dialog or form

that is calling the component. This
is usually the Me.hWnd form
variable but could also be the
Win32 API command
GetDesktopWindow().

8. reporter IDcReport This is a report object that allows
RunComponent() to report
errors back to the calling
application.

9. stringForIID String Optional. The item container's
interface Id (IID) as a string
constant. Only applicable if
itemContainer is defined.

10. itemContainer Variant Optional. The item container's
IUnknown interface from which to
access the item container interface
specified in stringForIID.

The following code snippet demonstrates calling the DcProperties component
using the Component Dispatcher. The code assumes the Item Server Type
Library and the Component Dispatcher Type Library have been referenced in
your project.

The DcComponentDispatcher.RunComponent() method expects a
DcItems object as its sixth input argument. The first few lines of code in the
following snippet create a DcItems object from an object Id string for this
purpose. The DcItems object holds a reference to the object upon which the
called component will operate. For this example, the object Id is
0900218d8007c4d6.

Source Code A working example of this source code can be found in the
"Chapter5/RunComponent" directory of the source code archive.

' Win32 API
Public Declare Function GetDesktopWindow Lib "user32" () As Long

Dim rv As Long

Chapter 5 – Proven Solutions for Common Tasks

177

Dim compDispatcher As New DcComponentDispatcher
Dim reporter As New DcReport
Dim items As New DcItems
Dim itemObj As New DcObjectItem

' build items object
itemObj.id = "0900218d8007c4d6"
items.Type = DC_OBJECT_ITEM_IID_STRING
items.Add itemObj

rv = compDispatcher.runComponent("DcProperties", _
 "", _
 session.getDocbaseName, _
 session.getUser("").getUserOSName, _
 "", _
 items, _
 GetDesktopWindow, _
 reporter, _
 "", _
 "")

' check for errors
' note the use of GetDesktopWindow Win32 API method
If (reporter.GetEntryCount > 0) Then
 reporter.Display GetDesktopWindow, DC_REPORT_OK_ONLY
End If

The DcComponentDispatcher.RunComponent() returns a long integer
constant indicating its status: DC_COMP_SUCCESS, or DC_COMP_FAILURE.
In this snippet, in addition to checking the number of entries in the DcReport
object, I could also have checked the return code, rv, for success for failure.

5.7 Error Trapping
Error trapping can be extremely useful to both the developer and the end user.
Unexpected errors that are not handled (i.e., trapped) can result in ungraceful and
frustrating program crashes. The technique that follows is simple to implement
and allows errors to be handled gracefully.

Error trapping in Visual Basic is implemented with the On Error statement.
The construct is simple, but the trap code must be comprehensive enough to trap
both Visual Basic errors and Documentum errors. The easiest way to do this is to

Chapter 5 – Proven Solutions for Common Tasks

178

use a combination of Documentum DcReport and IDfException objects, and
Visual Basic Err objects. The following code snippet demonstrates this
technique.

Source Code A working example of this source code can be found in the
"Chapter5/Error Trap" directory of the source code archive.

' Win32 API
Public Declare Function GetDesktopWindow Lib "user32" () As Long

Dim r As New DcReport
Dim e As IDfException

On Error GoTo HandleError

' lots of hairy code here

HandleError:

If (Len(Err.Description) > 0) Then
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
End If

This error trap determines if an error occurred by checking the length of the
Description property in the Err object. Fortunately, when errors occur in the
DFC, they are also manifested as Visual Basic errors. The Err object is used to
instantiate an IDfException object and the IDfException object is then added to
the DcReport object for display. The DcReport object provides a standard UI to
display error messages and has the added benefit of providing a stack trace. The
DcReport object needs a window handle to ensure it displays on top of the
window where the error occurred. By using the GetDesktopWindow() API
method, I ensure the DcReport object is always on the top of the window stack.

Figure 5.2 shows an example of the type of error information this code snippet
returns to the user.

Something to consider when trapping errors is whether a collection could be open
when an error occurs. If one could be, you must close it in the error trap code. A
collection can be closed in the trap code like this:

Chapter 5 – Proven Solutions for Common Tasks

179

' close an open collection
If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If
End If

Figure 5.2 - DcReport UI Showing Error and Stack Trace

Something else to consider is whether a session lock could be engaged when an
error occurs. If one could be, you can release it in the trap code also. For
example:

' release session lock
If (Not sessionLock Is Nothing) Then

sessionLock.ReleaseLock
End If

Of course, there could be any number of other things that must be closed,
released, or otherwise handled in an error trap. Your implementation may vary,
but the basic structure and logic demonstrated here provides a base on which to
build. You will see this technique put to real use in Chapter 8, Putting It All
Together In A Sample Application.

Chapter 5 – Proven Solutions for Common Tasks

180

Use error trapping judiciously. Remember that errors bubble up through the call
stack until they are trapped. Therefore, not every little helper method and
subroutine needs an error trap. Little helper methods and subroutines can let their
errors bubble up the call stack to their callers.

5.8 Tracing
Tracing is a useful debugging and tuning tool. Tracing is when the server and/or
the client records information regarding its actions and interactions to a file. This
file can then be reviewed to debug problems or performance issues.

This section discusses three types of tracing: client-side, server-side, and custom.
Client-side tracing is provided by Documentum, is enacted on the client, and
writes to files on the client. It records the actions of the DFC and the
Documentum API as commands are executed on the client. Server-side tracing is
also provided by Documentum, is enacted on the server, and writes to files on the
server. It records the actions of the server and the database as they execute
commands. Custom tracing is implemented on the client by the developer using
custom code. It can record whatever information is valuable to the developer,
such as execution times of loops, or memory usage. All three types of tracing are
valuable, but depending upon your purpose, one may be more useful than another.

5.8.1 Client-Side Tracing

Client-side tracing captures API, DFC, and DQL information, as well as the
informational, warning, error, and fatal messages generated by these commands.
Client-side tracing can be enabled in three ways:

• From the Properties screen of the Documentum Desktop,
• From the dmcl.ini file,
• Programmatically from an application or component.

I will briefly discuss each of these methods; however, since this book is written
for developers, I will give the most attention to the programmatic method. Note
the content and format of the trace files produced by Documentum vary

Chapter 5 – Proven Solutions for Common Tasks

181

depending upon the category and trace level selected. Consult the Documentum
Content Server Administrator's Guide and Documentum Desktop User Guide for
details.

5.8.1.1 Properties Screen Of The Documentum Desktop

To enable client-side tracing from the Documentum Desktop icon:

1. Login to the Docbase using the Documentum Desktop.
2. Close the Documentum Desktop window.
3. Right-click the Documentum Desktop icon on the desktop.
4. Choose Properties.
5. Click on the Advanced tab (see Figure 5.3).
6. Choose a Category of event to trace (see Table 5.3 for an explanation of

these categories).
7. Choose a severity Level (see Table 5.4 for an explanation of these levels).

Note that levels are cumulative so choosing severity level 3 will capture
levels 1, 2, and 3 messages also.

8. Note the log file name and location is pre-determined:
C:\Documentum\logs\trace.log. Also, note that this file is
appended every time tracing is enabled, so its potential for growth is great.

9. Click OK.
10. Restart the Documentum Desktop.

Comment [MSR1]: Delete Fig 5.3

Chapter 5 – Proven Solutions for Common Tasks

182

Figure 5.3 - Advanced Tab of Documentum Desktop Properties

The categories and levels of tracing are explained in Tables 5.3 and 5.4. Note not
all trace levels are applicable to all trace categories.

Table 5.3 - Client-Side Trace Categories

Trace Category Explanation
Component dispatching Trace dispatching of COM components,

including Microsoft Internet Component
Delivery.

Event dispatching Trace the dispatching of events.
Login management Trace logins.
Virtual document
management

Trace the actions of the Virtual Document
Manager.

Windows Explorer
integration

Trace the actions of the Documentum
Desktop.

Workflow management Trace workflows.
Enable Desktop tracing
as follows (integrated
with DFC) checkbox

Enable DFC and API tracing in any of the
categories list. Note this checkbox is only
active when a Docbase session exists.

Chapter 5 – Proven Solutions for Common Tasks

183

Table 5.4 - Client-Side Trace Levels

Trace Level Value Explanation
None 0 Turns tracing off.
Exceptions 1 Records DFC exceptions.
Errors 2 Records fatal DFC error information.
Interface
Entry/Exit

3 Traces all method calls that are members
of COM interfaces.

Interface Debug 4 Records detailed trace information about
all method calls that are members of COM
interfaces.

All Entry/Exit 5 Traces all calls into and out of all
methods.

Debug 6 Records more detailed trace information
about all method calls.

Object Creation 7 Records Java object creation message.
Object
Destruction

8 Records Java object destruction message.

System Memory 10 Records system memory usage.

Following is an excerpt from a log file generated with Windows Explorer
integration tracing with Enable Desktop tracing as follows
(integrated with DFC) selected, and the trace level set to 6–Debug
(see Figure 5.3). The event traced was a query for the object named
us_constitution.txt in the /Temp directory:

select r_object_id,object_name from dm_document where
FOLDER('/Temp') and object_name like 'us_con%'

With your knowledge of how queries and collections work, you will be able to
follow the actions recorded in the log file. I have highlighted a few lines with
bold typeface to help you. Note that toward the end of the excerpt I excised some
lines to save space.

22:19:49,141 [Thread-8] ..djcb::IDfClientX.getQuery() [started]
22:19:49,141 [Thread-8] ..com.documentum.com.DfClientX@12d263f.

getQuery() [started]

Chapter 5 – Proven Solutions for Common Tasks

184

22:19:49,141 [Thread-8] ...com.documentum.fc.client.
DfQuery@39ab89.<init>() [started]

22:19:49,141 [Thread-8] ...com.documentum.fc.client.DfQuery
[finished]

22:19:49,141 [Thread-8] ..getQuery [finished]
com.documentum.fc.client.DfQuery@39ab89

22:19:49,141 [Thread-8] .djcb::Create Java Object –-
>com.documentum.fc.client.DfQuery (e165c88)

22:19:49,141 [Thread-8] .djcb::IDfClientX.getQuery [finished]
com.documentum.fc.client.DfQuery@cb84044

22:19:49,141 [Thread-8] ..djcb::IDfQuery.setDQL ('select
r_object_id, object_name from dm_document where
FOLDER('/Temp') and object_name like 'us_con%') [started]

22:19:49,141 [Thread-8] ..com.documentum.fc.client.
DfQuery@39ab89.setDQL ('select r_object_id, object_name from
dm_document where FOLDER('/Temp') and object_name like
'us_con%'') [started]

22:19:49,141 [Thread-8] ..setDQL [finished]
22:19:49,141 [Thread-8] .djcb::IDfQuery.setDQL [finished]
22:19:49,141 [Thread-8] ..djcb::IDfQuery.execute

('com.documentum.fc.client.DfSession@cb83ffc, '0) [started]
22:19:49,141 [Thread-8] ..com.documentum.fc.client.

DfQuery@39ab89.execute ('DfSession@23e5d1', '0') [started]
22:19:49,141 [Thread-8] ...com.documentum.fc.client.

DfSession@23e5d1.apiGet [SYNCH] ('query_cmd,s0,T,F,,,,,select
r_object_id, object_name from dm_document where
FOLDER('/Temp') and object_name like 'us_con%'') [started]

22:19:49,251 [Thread-8] ...apiGet [finished] q0
22:19:49,251 [Thread-8] ...com.documentum.fc.common.

DfId@2cb49d.<init> ('q0') [started]
22:19:49,251 [Thread-8] ...com.documentum.fc.common.DfId

[finished]
22:19:49,251 [Thread-8] ...com.documentum.fc.client.

DfTypedObject@105d88a.<init> ('DfSession@23e5d1', 'q0',
'false') [started]

22:19:49,251 [Thread-8]com.documentum.fc.client.
DfCollection@105d88a.initialize ('DfSession@23e5d1', 'q0')
[started]

22:19:49,251 [Thread-8]initialize [finished]
22:19:49,251 [Thread-8] ...com.documentum.fc.client.DfCollection

[finished]
22:19:49,251 [Thread-8] ...com.documentum.fc.client.

DfTypedObject@105d88a.<init> ('DfSession@23e5d1', 'q0')
[started]

22:19:49,251 [Thread-8] ...com.documentum.fc.client.DfCollection
[finished]

Chapter 5 – Proven Solutions for Common Tasks

185

22:19:49,251 [Thread-8] ...com.documentum.fc.client.
DfCollection@105d88a.<init> ('DfSession@23e5d1', 'q0', 'true')
[started]

22:19:49,251 [Thread-8]com.documentum.fc.client.
DfCollection@105d88a.getAttachedSession() [started]

22:19:49,251 [Thread-8]getAttachedSession [finished]
com.documentum.fc.client.DfSession@23e5d1

22:19:49,251 [Thread-8]com.documentum.fc.client.
DfCollection@105d88a.getObjectId() [started]

22:19:49,251 [Thread-8]getObjectId [finished] q0
22:19:49,251 [Thread-8]com.documentum.fc.common.DfId@ddf.

isNull() [started]
22:19:49,251 [Thread-8]isNull [finished] 'false'
22:19:49,251 [Thread-8] ...com.documentum.fc.client.DfCollection

[finished]
22:19:49,251 [Thread-8] ..execute [finished]

com.documentum.fc.client.DfCollection@105d88a
22:19:49,261 [Thread-8] .djcb::Create Java Object –-

>com.documentum.fc.client.DfCollection (e165c90)
22:19:49,261 [Thread-8] .djcb::IDfQuery.execute [finished]

com.documentum.fc.client.DfCollection@cb8412c

< snip >

22:19:49,261 [Thread-8] ..djcb::IDfCollection.getAttrCount()

[started]

< snip >

22:19:49,281 [Thread-8] .djcb::IDfCollection.getAttrCount

[finished] 2

< snip >

22:19:49,291 [Thread-8] ..djcb::IDfCollection.getAttr (0)

[started]

< snip >

22:19:49,311 [Thread-8] ..getAttr [finished] DfAttr: name:

r_object_id; repeating: false; type: DM_STRING; length: 16

Obviously, higher trace levels produce more output than lower ones. Be aware of
this: Documentum traces are very verbose. Not only can you fill up your hard
drive, but who wants to wade through megabytes of information looking for a

Chapter 5 – Proven Solutions for Common Tasks

186

particular trace message? Tracing implemented in this fashion should be used
sparingly.

5.8.1.2 DMCL.INI File

Client-side tracing can also be enabled from the dmcl.ini file. The tracing
level specified in the dmcl.ini file is for API* tracing only. API tracing can
produce very granular trace results since the DFC calls into the API to
communicate with the Documentum Server. This trace method produces trace
files that contain much different information than ones produced by the
Documentum Desktop. In addition to the API calls themselves, these files often
contain communication messages between the client and server, as well as the
DQL passed between them. You will notice that this trace file's format is a little
cleaner than the DFC trace file's format.

To enable tracing in the dmcl.ini file, add the following name-value pairs to
the [DMAPI_CONFIGURATION] section of the file.

• trace_file = <full path and name of trace file>
• trace_level = <numeric trace level from Table 5.5>

Table 5.5 - API Trace Levels

Trace Level Value Explanation
None 0 Turns tracing off.
Level 1 Messages 1 Records informational messages only.
Level 2 Messages 2 Records informational and warning

messages.
Level 3 Messages 3 Records informational, warning, and

error messages.
Level 4 Messages 4 Records informational, warning, error,

and fatal error messages.
Timing
Information

10 Records all messages plus timing
statistics.

Load Operation
Information

11 Records information regarding loading
of data objects during Load operations.

* API tracing is also known as DMCL tracing.

Chapter 5 – Proven Solutions for Common Tasks

187

Here is a sample dmcl.ini file that enables API tracing:

[DOCBROKER_PRIMARY]
host = 192.168.0.1

[DMAPI_CONFIGURATION]
trace_level = 10
trace_file = c:\Documentum\logs\dmcl-trace-10.log

The dmcl.ini file is read by the Documentum Desktop when it first starts, and
then not again—even if you close the Documentum Desktop window. Therefore,
if you modify the dmcl.ini file while the Documentum Desktop is running,
you will need to restart it before the changes will take affect. Chapter 7, Tips,
Tools and Handy Information, discuss how to do this. When you use the
dmcl.ini file to trace a custom Documentum Desktop application, it is read
every time the application initializes the DFC.

Following is an excerpt from a log file generated with API tracing level 10
enabled through the dmcl.ini file. The same query traced in the previous
section is also traced here:

select r_object_id,object_name from dm_document where
FOLDER('/Temp') and object_name like 'us_con%'

Again, I highlighted a few lines in bold typeface to help you follow along.

[3676] 22:50:41 2004 334000 (0.000 sec) (143 rpc) API>

query_cmd,s0,T,F,,,,,select r_object_id, object_name from
dm_document where FOLDER('/Temp') and object_name like
'us_con%'

[3676] 22:50:41 2004 334000 (0.000 sec) (143 rpc) Server
RPC: EXEC (0000000000000000) select r_object_id, object_name
from dm_document where FOLDER('/Temp') and object_name like
'us_con%'

[3676] 22:50:41 2004 354000 (0.020 sec) (144 rpc) Res: 'q0'
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) API>

count,s0,q0
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) Res: '2'
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) API>

get,s0,q0,_names[0]

Chapter 5 – Proven Solutions for Common Tasks

188

[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) Res:
'r_object_id'

[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) API>
get,s0,q0,_repeating[0]

[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) Res: '0'
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) API>

get,s0,q0,_lengths[0]
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) Res: '16'
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) API>

get,s0,q0,_types[0]
[3676] 22:50:41 2004 354000 (0.000 sec) (144 rpc) Res: '2'

Notice the difference in content between this trace file and the previous one, even
though they were tracing the same event. The previous trace file exposed the
inner workings of the DFC where this one exposes the API commands generated
by the DFC.

5.8.1.3 Programmatically

Programmatically, you can enable both DFC and API client-side tracing, but since
the API is not the focus of this book, I will not discuss it in detail. Instead, I will
concentrate on how to enable and use tracing from the DFC.

5.8.1.3.1 API

The basic API trace command is:

dmAPIExec("trace,c,<trace level>")

The value for <trace level> is any API trace value from Table 5.5. Chapter
7, Tips, Tools and Handy Information, provides details for using API commands.
See the Documentum Content Server API Reference Manual for more information
about the trace() API method.

5.8.1.3.2 DFC

In the DFC, tracing is controlled by the DfClientX class. The following code
snippet demonstrates an easy way to start and stop DFC tracing programmatically.
Refer to Table 5.4 for the definitions of the different trace levels.

Chapter 5 – Proven Solutions for Common Tasks

189

Dim cx As New DfClientX

' start tracing
cx.setTraceLevel (10)
cx.setTraceFileName ("c:\Documentum\logs\dfc-trace-10.log")

' your code here

' stop tracing
cx.setTraceLevel (0)

The example above is a fine technique to use during development and testing
when the source code of your application is available and can be recompiled when
needed. However, often you need to debug and troubleshoot problems after your
application has gone to testing–or worse, is in production. To do this, a more
dynamic technique for controlling tracing is needed. The following code snippet
demonstrates a technique for dynamically controlling tracing in your application.
It utilizes arguments passed on the command line when the application starts to
enable tracing. These arguments can also be encapsulated in the application's
shortcut or Start menu item if necessary.

Source Code A working example of this source code can be found in the
"Chapter5/Tracing" directory of the source code archive.

Dim cx As New DfClientX
Dim cmd() As String
Dim cmdLine As String

' to start tracing, start program with: c:\>tracing.exe debug 10

cmdLine = Command()
If (cmdLine <> "") Then
 cmd() = Split(cmdLine, " ")
 If (LCase(cmd(0)) = "debug") Then
 cx.setTraceFileName App.EXEName & ".log"
 cx.setTraceLevel cmd(1)
 End If
End If

cx.traceMsg "Start Trace: " & Time

' your code here

Chapter 5 – Proven Solutions for Common Tasks

190

cx.setTraceLevel (0)

This code snippet examines the command line arguments, and if they meet the
criteria (i.e., the word "debug" followed by a number), sets up tracing in the DFC.
The trace level is set to the value passed on the command line, and the trace file is
named after the application. This snippet also demonstrates how to write your
own debugging messages into the trace file using the
DfClientX.traceMsg() method.

To initiate tracing for an application using this technique, use command line
syntax like this (assume your program is named tracing.exe):

C:> tracing.exe debug 10

The tracing level will be set to DFC Level 10 (System Memory) and the trace
file will be named tracing.log.

5.8.2 Server-Side Tracing

Server-side tracing captures server activity messages, as well as informational,
warning, error, and fatal error messages. All server-side tracing information is
written to the server log file. Server-side tracing can be enabled in two ways:

• Setting the trace flag on the server startup command line,
• Using the apply() API method.

Remember, server-side trace captures messages not only from your session, but
from all sessions. These messages are recorded in the server log, and have the
potential for consuming a large amount of disk space very quickly. I recommend
that you only enable server-side tracing for short periods of time to minimize the
size of the log files.

5.8.2.1 Server Startup Command Line

You can enable server-side tracing by adding the trace flag (-o) at the end of the
command line argument list used to start the Documentum Server. The easiest

Chapter 5 – Proven Solutions for Common Tasks

191

way to do this is by editing the Service definition for the Docbase in the
Documentum Server Manager utility.

1. Start the Documentum Server Manager utility by selecting it from
the Start menu. The interface for the Documentum Server
Manager is shown in Figure 5.4

Figure 5.4 - Documentum Content Server Manager

2. Select a Docbase and click the Edit Service button. The Edit Service

dialog box is displayed (see Figure 5.5).
3. Add –o and a trace level value from Table 5.6 to the startup

parameters in the Command field. For example: -odebug
4. Click OK.
5. Stop and restart the Docbase for the trace command to take affect.
6. Close the Documentum Server Manager utility.

Chapter 5 – Proven Solutions for Common Tasks

192

Figure 5.5 - Edit Service Dialog

Table 5.6 - Server-Side Trace Levels

Trace Level Explanation
debug Records session shutdown, change check,

launch, and fork messages.
lock_trace Records Windows NT locking information.
sqltrace Records SQL queries and commands sent to

the RDBMS.
nettrace Records RPC trace information.
trace_authentication Records details about user authentication.
net_ip_addr Records client and server IP addresses.
trace_complete_launch Records Unix process launch information.
docbroker_trace Records DocBroker information and messages.

5.8.2.2 API

While the server is running, server-side tracing can be enabled (and disabled) by
using the apply() API method. This API method can be issued from the API
editor in the Documentum Administrator, the iapi32.exe command line
utility*, or from within an application. The format of the apply() method used
to enable tracing is:

apply,c,NULL,SET_OPTIONS,OPTIONS,S,<option name>,VALUE,B,T

* See Chapter 7, Tips, Tools and Handy Information, for more information regarding the iapi32.exe utility.

Chapter 5 – Proven Solutions for Common Tasks

193

Use one of the trace levels from Table 5.6 in place of <option name>. For
example, to enable SQL tracing use:

apply,c,NULL,SET_OPTIONS,OPTIONS,S,sqltrace,VALUE,B,T

Changing the trailing T to an F will disable tracing. To discontinue SQL tracing,
use:

apply,c,NULL,SET_OPTIONS,OPTIONS,S,sqltrace,VALUE,B,F

The apply() API method is a very powerful administrative tool. You must
have at least, System Administrator privileges in the Docbase to use the
apply() API method. I recommend reviewing the Documentum Content Server
API Reference Manual to understand its full capabilities.

5.8.3 Custom Tracing

This section discusses how to implement a custom tracing technique. Similar to
the tracing techniques discussed previously, this technique writes trace
information to a log file. Unlike the previous techniques, it also writes to the
Visual Basic IDE Immediate window. The beauty of this technique is it only
captures and writes the exact information that you need to successfully debug and
optimize your application. It is able to accomplish this because you control the
information it writes to the log file. Therefore, it is easy to tweak and tune to
provide the most valuable output for your situation. There are many other tracing
techniques and tools discussed by numerous Documentum resources;* I refer you
to those resources instead of rehashing them here.

The implementation of this technique is contained in a simple subroutine. This
subroutine produces output in an easy to read, standardized format. It assumes
the gDEBUG Boolean variable is defined globally in your application and the DFC
trace level has been set to a value greater than 0 using the
IDfClient.setTraceLevel() method. Based upon these variables, the
subroutine will record trace messages to the log file, the Visual Basic Immediate

* See Documentum Technical Support Note #7700 for a discussion of interpreting trace files. Also, the Documentum
Application Performance and Tuning guide makes extensive use of trace files for performance tuning and does an excellent
job of explaining them.

Chapter 5 – Proven Solutions for Common Tasks

194

window, one or the other, or neither. Note the use of the Win32 API function
GetTickCount() to provide millisecond granularity in the trace file.

Source Code A working example of this source code can be found in the
"Chapter5/Debug" directory of the source code archive.

' Win32 API declaration
Private Declare Function GetTickCount Lib "kernel32" () As Long

Sub outputDebugMsg(caller As String, msg As String)

 msg = Now() & " - " & GetTickCount() & " - " & caller _
 & ": " & msg

 ' ouput to trace file
 If (cx.getTraceLevel > 0) Then
 cx.traceMsg (msg)
 End If

 ' output to immediate window
 If (gDEBUG > 0) Then
 Debug.Print msg
 End If

End Sub

The subroutine requires two arguments:

• The name of the subroutine/function/module calling the
outputDebugMsg() subroutine. Unfortunately, it is necessary to pass
this information into the subroutine because Visual Basic does not provide
a way to easily glean the caller's name from the IDE, the OS, or the stack.

• The message to be written to the file.

To use the subroutine, simply define the global gDEBUG variable and call the
subroutine as illustrated below.

Private Const gDEBUG = 1 ' 0 to disable

Sub main()

 Call outputDebugMsg("main", "Start Trace")

Chapter 5 – Proven Solutions for Common Tasks

195

' your code here

 Call outputDebugMsg("main", "End Trace")

End Sub

The format of the output debug message is:

<date/time> - <milliseconds> - <caller name> : <debug message>

where:

• <date/time> is the date and time the debug message was written.
• <milliseconds> are the number of milliseconds since the CPU was

last rebooted. This value provides a more granular measure of duration
than the date/time stamp does.

• <caller name> is the name of the subroutine/function/module calling
the subroutine.

• <debug message> is the message you passed to the subroutine.

The following is sample output from the Immediate window generated by the
outputDebugMsg() subroutine.

6/14/2002 10:27:47 AM - 95689734 - main: Start Trace
6/14/2002 10:27:47 AM - 95689754 - collectionCount1: query count:

1
6/14/2002 10:27:47 AM - 95689774 - collectionCount1: row:

090030398000015c TargetSetup.Result
6/14/2002 10:27:47 AM - 95689784 - collectionCount2: row:

090030398000015c TargetSetup.Result
6/14/2002 10:27:47 AM - 95689784 - collectionCount2: count = 1
6/14/2002 10:27:47 AM – 95690475 – main: End Trace

From this output, it is easy to determine that the main() subroutine ran for 741
milliseconds by subtracting the millisecond value recorded with Start Trace
(95689734) from the millisecond value recorded with End Trace
(95690475). If DFC tracing was enabled (i.e., cx.getTraceLevel() >
0), these messages were written to the Documentum trace file
(c:\Documentum\logs\trace.log) also.

Chapter 5 – Proven Solutions for Common Tasks

196

5.9 Auditing
Auditing captures information about system events and records it in protected
objects in the Docbase. This information can then be analyzed to determine
access patterns, user activity, or reconstruct security events. Documentum
provides the capability to automatically audit over 65 system events. The only
requirement to enable auditing of one or all of these events is for a System
Administrator to configure it through the Documentum Administrator. For more
information on how to set up auditing, see the Documentum Content Server
Administrator's Guide.

The auditing described in this section is custom auditing. This means that the
events audited are not among the 65-plus events Documentum has defined. In
this section, I will show you how to programmatically create Documentum audit
records for any action that takes place in the Docbase. In addition, this auditing
does not require any action from the System Administrator; the code takes care of
it all.

Documentum’s audit trail is maintained in dm_audittrail objects. The
dm_audittrail objects have six named attributes, five generic string
attributes, and five generic Id attributes. The six named attributes are mandatory
and must contain valid entries. However, only five are mutable; one is
maintained by the server. For system-defined events (i.e., one of the more than 65
Documentum has defined), the server provides values for these attributes
automatically. The five string and five Id attributes are not mandatory and are
provided to hold custom values. The six named attributes are summarized in
Table 5.7

Table 5.7 - Mandatory dm_audittrail Attributes

Attribute Name Type Comment
event_name String The name of the event that generated

the audit entry.
event_source String The name of the source of the event.
user_name String The name of the user whose event

caused the audit entry.
audited_obj_id Id The r_object_id of the object on

which the event occurred.

Chapter 5 – Proven Solutions for Common Tasks

197

Attribute Name Type Comment
time_stamp Time The time and date the event occurred.
r_gen_source Number This attribute is automatically set by the

server and is immutable. It contains 0
if the event is user-defined, 1 if the
event is system-defined.

The five generic string attributes are named string_1 through string_5, and
the five generic Id attributes are named id_1 through id_5.

To programmatically create an audit trail entry, simply create a
dm_audittrail object as you would any other object; provide values for the
five mandatory attributes that you can update; provide values for any of the
generic attributes you need; and save the object. The snippet of code below
demonstrates this process.

In this example, an event named "New audit entry created" occurs on an object
with Id of 090023eb8000015b. The source of the event is a test program and
the user is the currently logged in user. After the five mandatory attributes are
filled, the code snippet inserts values into two of the generic string attributes.

Source Code A working example of this source code can be found in the
"Chapter5/Audit" directory of the source code archive.

Dim pObj As IDfPersistentObject

' create audit trail object
Set pObj = session.newObject("dm_audittrail")

' enter mandatory attributes
' NOTE: r_gen_source is not an update-able attribute
pObj.setString "event_name", "New audit entry created"
pObj.setString "event_source", "test program"
pObj.setString "user_name", session.getUser("").getUserOSName
pObj.setString "audited_obj_id", "090023eb8000015b "
pObj.setString "time_stamp", Now

' enter optional attributes
pObj.setString "string_1", "The name of the object: " _
 & "090023eb8000015b is in string_2"

Chapter 5 – Proven Solutions for Common Tasks

198

pObj.setString "string_2", session.GetObject(cx.getId _
 ("090023eb8000015b ")).getString("object_name")

' save audit record
pObj.save

After running this code, you can examine the audit trail using the Documentum
Administrator, or use the following code snippet.

Source Code A working example of this source code can be found in the
"Chapter5/Audit" directory of the source code archive.

 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim attr As IDfAttr
 Dim numCols As Integer
 Dim i As Integer

 ' query the audit trail object
 Set q = cx.getQuery
 q.setDQL "select * from dm_audittrail where audited_obj_id" _
 & " = '090023eb8000015b'"
 Set col = q.execute(session, DF_READ_QUERY)

 ' get number of attrs in collection
 numCols = col.getAttrCount

 ' iterate over collection and process each row
 While (col.Next = True)

 ' process each column in a row
 For i = 1 To numCols
 Set attr = col.GetAttr(i - 1)
 Debug.Print i & ": " & attr.getName & " = " _
 & col.getValue(attr.getName).asString
 Next i
 Wend
 col.Close

The output from this code snippet looks like this:

Chapter 5 – Proven Solutions for Common Tasks

199

1: r_object_id = 5f0023eb80000901
2: event_name = New audit entry created
3: event_source = dm_book tester program
4: user_name = dmadmin
5: audited_obj_id = 090023eb8000015b
6: time_stamp = 12/30/2002 23:56:24
7: string_1 = The name of the object: 090023eb8000015b is in

string_2
8: string_2 = TargetSetup.Result
9: string_3 =
10: string_4 =
11: string_5 =
12: id_1 = 0000000000000000
13: id_2 = 0000000000000000
14: id_3 = 0000000000000000
15: id_4 = 0000000000000000
16: id_5 = 0000000000000000

As you can see, this query returns all 16 of the dm_audittrail's attributes.
Notice how it includes the five generic string attributes, and the five generic Id
attributes. You can easily modify the collection-processing loop if a more elegant
presentation of this data is needed.

5.10 Using The Progress Sentinel
The progress sentinel is a class you see in action whenever you launch the
Documentum Desktop or a component. It's the little window that pops up letting
you know the class is initializing or loading, as in Figure 5.7.

The progress sentinel is a class similar to the operation monitor discussed in
Chapter 4, Implementing Core Document Management Functions. It provides
user feedback during an operation, and optionally allows users to cancel the
operation. However, unlike the operation monitor class, all of the programming
work is up to you. The class is simple; it displays and hides itself, updates the
percentage complete, and indicates when the Cancel button is clicked. Similar to
the operation monitor, it runs as its own process so other code in your application
can run simultaneously.

Chapter 5 – Proven Solutions for Common Tasks

200

Figure 5.7 - The Progress Sentinel

The code snippet below illustrates a very simple implementation of the progress
sentinel. While the sentinel is displayed, the code updates the percentage
complete property every second as it waits for you to click the Cancel button.
Your project must reference the Documentum Progress Sentinel Type Library to
run this code.

Source Code A working example of this source code can be found in the
"Chapter5/Progress Sentinel" directory of the source code archive.

' Win32 API declares
Public Declare Function GetDesktopWindow Lib "user32" () As Long

Dim sentinel As New DCPROGRESSSENTINELLIB.Progress
Dim i As Integer

' set up the sentinel
sentinel.Message = "This is the Progess Sentinel"
sentinel.Title = "Operation in Progress..."
sentinel.ShowDialog GetDesktopWindow

i = 0
While ((sentinel.Cancelled = False) And (i < 10))
 sleep (1)
 i = i + 1
 sentinel.PercentComplete = (i * 10)
Wend

sentinel.HideDialog

If (sentinel.Cancelled = True) Then
 MsgBox "You clicked cancel on the sentinel when i = " _

Chapter 5 – Proven Solutions for Common Tasks

201

 & i, vbInformation, "Sentinel Cancel"
End If

This code snippet produces the progress sentinel shown in Figure 5.8

Figure 5.8 - Example Sentinel

Though simple, this snippet effectively illustrates how the progress sentinel
works. It also shows the programming effort required to make the underlying
process aware of the sentinel's cancel event. Unlike the operation monitor class,
this class does not undo anything when the cancel event occurs. The progress
sentinel is a fun and useful class, and gives your application a professional polish.

5.11 Using The Registry
Like most Microsoft Windows applications, the Documentum Desktop makes use
of the registry. Among other things, the Documentum Desktop uses it to persist
the identity and location of files checked out for editing, viewing, and deletion. If
you haven’t browsed the Documentum registry keys, take a look at them. The
Documentum root registry key is
HKEY_LOCAL_MACHINE\SOFTWARE\Documentum, and the user specific
key is HKEY_CURRENT_USER\SOFTWARE\Documentum*.

* Documentum’s Windows registry keys changed slightly throughout the 4i and 5 releases, and from operating system to
operating system. You might need to make slight adjustments to the registry keys discussed in this section to
accommodate your version of Documentum and your operating system.

Chapter 5 – Proven Solutions for Common Tasks

202

Documentum provides several convenient classes in the DFC for accessing the
Windows registry. One of the most useful is the DcRegistryKey class and will be
discussed in more detail in following sections. At first glance, it would appear
that the IDfRegistry class would also be useful. This class appears to provide
access to the registry and its contents with methods that return easy-to-use-data
structures. Unfortunately, it has some serious limitations that render it all but
useless. Not the least of which is, it is generally undocumented and unsupported.
As attractive as this class and its methods appear, don't use it. Documentum
maintains this class is for internal use only and is not supported. If you peruse the
source code provided in the Documentum Desktop Component Source archive*,
you will not find one mention of this class, even though several of the
components clearly use the registry. In every case where the Windows registry is
accessed, Documentum wrote custom code using the Microsoft Win32 API as
opposed to using this class.

Fortunately, all the other registry-related DFC classes work fine. This section will
use several of them to accomplish three common tasks:

• Accessing the registry and reading/writing key values,
• Enumerating subkeys,
• Accessing checked out files.

5.11.1 Accessing The Registry

The IDfRegistry class insulates you from much of the ugliness of accessing the
Windows registry. It provides the basic functionality and control necessary to
effectively and easily use the Windows registry in applications. The code snippet
below demonstrates how easy this class is to use by opening the
HKEY_CURRENT_USER\Software\Documentum\Common\LastConne
ctedDocbase key, reading the User value, writing a test value, and closing
the key. Your project must reference the Documentum Desktop Client Utilities
Manager Type Library to run this code.

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 5 – Proven Solutions for Common Tasks

203

Source Code A working example of this source code can be found in the
"Chapter5/Registry" directory of the source code archive.

Dim regObj As New DcRegistryKey
Dim user As String

regObj.open regObj.UserHiveHkey, "Software\Documentum\Common\" _
 & "LastConnectedDocbase"
user = regObj.ReadStringValue("User")
MsgBox "user=" & user, vbInformation, "User"
regObj.WriteStringValue "test", "test"
regObj.Close

The DcRegistryKey class makes it easy to read and write Windows registry keys.
If you know the key, you can read or write its value with a simple method call.
You can use regedit.exe to verify the changes this code snippet made to the
HKEY_CURRENT_USER\Software\Documentum\Common\
LastConnectedDocbase key.

Another useful class for dealing with the Windows registry is the
IDfClientRegistry class. This class provides easy access to Documentum object
and Desktop information stored in the Windows registry. It is used mostly to
retrieve and persist information necessary to implement library services.
IDfClientRegistry objects are manufactured by the DfClientX class. The next
section discusses how to use the class to access checked out files.

5.11.2 Accessing Checked Out Files

If you want to determine if a file is checked out and what its local file path is, you
can use the methods of the IDfClientRegistry and IDfCheckedOutObject classes.
The following snippet demonstrates this technique. It determines if an object with
Id of 0900218d800895eb is checked out.

Source Code A working example of this source code can be found in the
"Chapter5/Checked Out Files" directory of the source code archive.

Dim reg As IDfClientRegistry
Dim chkObj As IDfCheckedOutObject

Set reg = cx.getClientRegistry

Chapter 5 – Proven Solutions for Common Tasks

204

Set chkObj = reg.getCheckedOutObjectById _
 (cx.getId("0900218d800895eb"))

' if not checked out, chkObj will be Nothing
If (Not chkObj Is Nothing) Then
 MsgBox chkObj.getFilePath, vbInformation, "Checked out path"
Else
 MsgBox "Not checked out", vbInformation, "Not checked out"
End If

You can similarly access viewed objects in the Windows registry by replacing the
chkObj variable with vwObj of type IDfViewedObject, and using the
IDfClientRegistry.getViewedObjectById() method.

Dim reg As IDfClientRegistry
Dim vwObj As IDfViewedOutObject

Set reg = cx.getClientRegistry

Set chkObj = reg.getViewedObjectById _
 (cx.getId("0900218d800895eb"))

' if not viewed, vwObj will be Nothing
If (Not vwObj Is Nothing) Then
 MsgBox vwObj.getFilePath, vbInformation, "Viewed path"
Else
 MsgBox "Not viewed", vbInformation, "Not viewed"
End If

5.11.3 Enumerating Subkeys

One capability the DcRegistryKey class does not provide is the ability to
enumerate subkeys. That is, it does not provide a method to list or manipulate the
subkeys of a known key. For example, you might search the Windows registry to
determine whether a document is checked out on the current workstation*. This
would require enumerating the
HKEY_LOCAL_MACHINE\USER\Software\Documentum\Common\Wor
kingFiles key looking for a subkey with a particular value. Wouldn't it be

* You could, of course, determine this using the IDfClientRegistry and IDfCheckedOutObject objects as demonstrated in
the previous section.

Chapter 5 – Proven Solutions for Common Tasks

205

nice to obtain a list of subkeys from the Windows registry, so they could be easily
manipulated? The following code snippet demonstrates just how to do that.

This example looks through the Windows registry keys the Documentum Desktop
uses to track checked out files to determine if a document with an Id of
0900218d80034cc7 has been checked out on this workstation. Your project
must reference the Documentum Desktop Client Utilities Manager Type Library
to run this code.

Source Code A working example of this source code can be found in the
"Chapter5/Registry" directory of the source code archive.

Dim regObj As New DcRegistryKey
Dim subKeyList As IDfList
Dim objId As String
Dim filename As String
Dim i As Integer

' call function to get subkeys as list
Set subKeyList = getRegSubKeyList(regObj.UserHiveHkey, _
 "Software\Documentum\Common\WorkingFiles")

' iterate through list object searching for Id
For i = 0 To subKeyList.getCount - 1

 regObj.open regObj.UserHiveHkey, _
 "Software\Documentum\Common\WorkingFiles\" _
 & subKeyList.getString(i)
 If (regObj.ReadStringValue("MasterObjectId") = _
 "0900218d80034cc7") Then

 ' now that you found the right subkey, do something
 ' with it

 MsgBox "Found it!"

 End If

 regObj.Close
Next i

The key to this example is the getRegSubKeyList() function. This function
provides the subkey enumeration functionality missing from the DcRegistryKey

Chapter 5 – Proven Solutions for Common Tasks

206

class. The getRegSubKeyList() function returns subkeys in an IDfList
object so they can be easily enumerated or otherwise manipulated.

The getRegSubKeyList() function follows, and is a good example of the
type of programming the DcRegistry class has insulated you from doing. Before
you use the function, you need to make a few declarations at the beginning of
your code. The following snippet registers the four Win32 API functions
necessary to manipulate the registry, as well as the constants and data types they
use.*

Source Code A working example of this source code can be found in the
"Chapter5/Registry" directory of the source code archive.

' Win32 API Registry Declarations
Private Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias _
 "RegOpenKeyExA" (ByVal hKey As Long, ByVal lpSubKey As _
 String, ByVal ulOptions As Long, ByVal samDesired As _
 Long, ByRef phkResult As Long) As Long

Private Declare Function RegQueryInfoKey Lib "advapi32.dll" _
 Alias "RegQueryInfoKeyA" (ByVal hKey As Long, ByVal _
 lpClass As String, lpcbClass As Long, ByVal lpReserved _
 As Long, lpcSubKeys As Long, lpcbMaxSubKeyLen As Long, _
 lpcbMaxClassLen As Long, lpcValues As Long, _
 lpcbMaxValueNameLen As Long, lpcbMaxValueLen As Long, _
 lpcbSecurityDescriptor As Long, _
 lpftLastWriteTime As FILETIME) As Long

Private Declare Function RegEnumKeyEx Lib "advapi32.dll" Alias _
 "RegEnumKeyExA" (ByVal hKey As Long, ByVal dwIndex As _
 Long, ByVal lpName As String, lpcbName As Long, ByVal _
 lpReserved As Long, ByVal lpClass As String, lpcbClass _
 As Long, lpftLastWriteTime As FILETIME) As Long

Private Declare Function RegCloseKey Lib "advapi32.dll" (ByVal _
 hKey As Long) As Long

' Win32 API Registry Constants
Private Const HKEY_LOCAL_MACHINE = &H80000002
Private Const ERROR_SUCCESS = 0&
Private Const STRING_BUFFER_SIZE = 256

* These Win32 API declaration statements and constant definitions can be easily obtained from the API Text Viewer
installed as part of the Visual Studio tools.

Chapter 5 – Proven Solutions for Common Tasks

207

Private Const KEY_ALL_ACCESS = 983103

' Registry Types
Private Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
End Type

In general, the getRegSubKeysList() function opens the Windows registry
key name passed to it, and determines if it has any subkeys by using the Win32
API RegQueryInfoKey() function. If it does, it iterates over the subkeys
using the Win32 API RegEnumKeyEx() function to collect the subkey names.
It then packages the names into an IDfList object and returns it. Note these
Win32 APIs return status codes and not the values from the registry. Registry
values are returned in arguments passed into the functions by reference.

The getRegSubKeysList() function requires two arguments:

• The hive as a long integer. The hive is usually defined as a constant (e.g.,
HKEY_LOCAL_MACHINE).

• The key's path as a string.

Source Code A working example of this source code can be found in the
"Chapter5/Registry" directory of the source code archive.

Function getRegSubKeyList(hive As Long, Path As String) As _
 IDfList
 Dim hPathKey As Long
 Dim keyList As IDfList
 Dim rc As Long
 Dim keyName As String
 Dim keyNameLen As Long
 Dim keyClassName As String
 Dim keyClassNameLen As Long
 Dim numSubKeys As Long
 Dim numKeyValues As Long
 Dim lastWriteTime As FILETIME
 Dim i As Integer

 Set keyList = cx.getList()

 ' registry APIs want all this stuff pre-set
 keyNameLen = STRING_BUFFER_SIZE

Chapter 5 – Proven Solutions for Common Tasks

208

 keyClassNameLen = STRING_BUFFER_SIZE
 keyName = String(keyNameLen, 0)
 keyClassName = String(keyClassNameLen, 0)

 ' open the path key
 If (RegOpenKeyEx(hive, Path, 0, KEY_ALL_ACCESS, hPathKey) = _
 ERROR_SUCCESS) Then

 ' see if there are any subkeys.
 If (RegQueryInfoKey(hPathKey, keyClassName, _
 keyClassNameLen, 0, numSubKeys, 1024, 1024, _
 numKeyValues, 1024, 1024, KEY_ALL_ACCESS, _
 lastWriteTime) = ERROR_SUCCESS) Then

 ' numsubKeys returned by RegQueryInfoKey API function

 ' if there are subkeys, process them
 If (numSubKeys > 0) Then
 For i = 0 To numSubKeys - 1

 ' registry APIs want all this stuff pre-set
 keyNameLen = STRING_BUFFER_SIZE
 keyClassNameLen = STRING_BUFFER_SIZE
 keyName = String(keyNameLen, 0)
 keyClassName = String(keyClassNameLen, 0)

 ' get the subkey name
 rc = RegEnumKeyEx(hPathKey, i, keyName, _
 keyNameLen, 0, keyClassName, _
 keyClassNameLen, lastWriteTime)

 ' keyName, keyNameLen returned by
 ' RegEnumKeyEx API function

 ' append subkey name to list object
 keyList.appendString Left(keyName, _
 keyNameLen)
 Next i

 Else
 Set keyList = Nothing
 End If

 Else
 MsgBox "Error on RegQueryInfoKey for key " _
 & hPathKey, vbExclamation, "RegQueryInfoKey _
 & , "Error"

Chapter 5 – Proven Solutions for Common Tasks

209

 Set keyList = Nothing
 End If

 RegCloseKey (hPathKey)

 Else
 MsgBox "Failed to open Registry key " & Path, _
 vbExclamation, "Reg Error"
 Set keyList = Nothing
 End If

 Set getRegSubKeyList = keyList

End Function

Note since error/success conditions are determined by the values returned from
the Win32 API functions and not Visual Basic Err objects, On Error statement
cannot be used to trap errors in this function.

5.12 Creating A Documentum Resource
Locator

A Documentum Resource Locator (DRL) is similar to a Windows shortcut or
Microsoft Internet Explorer bookmark. It is a little file on your hard drive or in an
e-mail that contains the address to an object in a Docbase. When this file is
opened, the object it refers to is automatically located in the Docbase and
retrieved. Depending upon your access to the object, Documentum may ask you
if you want to View, or Edit the object. In addition, if you are not logged in, the
Docbase will require you to login.

Creating a DRL for an object is very simple; it’s just a matter of writing a text
string to a file on your hard drive and giving it a .DRL extension. The .DRL
extension associates the file with the Documentum Desktop. The text string
written to the file follows this general format:

<docbase>:/<object identifier>?<DRL syntax>

Chapter 5 – Proven Solutions for Common Tasks

210

Where <docbase> is the name of your Docbase, <object identifier> is
the appropriate object identifier of the object, and <DRL syntax> is a string of
DRL commands from Table 5.8.

Table 5.8 - DRL Commands

Syntax Explanation
DMS_OBJECT_SPEC Tells Documentum what the preceding string

represented. Valid values are: PATH, PREDICATE,
CHRONICLE_ID, or OBJECT_ID.

DMS_METHOD Specifies a server method to run.
DMS_TYPE Indicates the type of the object. Valid values are:

DM_SYSOBJECT or any dm_sysobject subtype.
DMS_VLAB Specifies a particular version of the object. Valid

values are any symbolic version label in the version
tree.

DMS_VNUM Specifies a particular version of the object by
version number. Valid values are any version
number in the version tree.

DMS_FORMAT Specifies the format of the object. Valid values are
any existing renditions of the object.

DMS_BRKR Specifies which DocBroker the specified Docbase is
using.

Here is a sample DRL that uses the DMS_OBJECT_SPEC=CHRONICLE_ID
syntax:

Docbase1:/0900218d8003413e?DMS_OBJECT_SPEC=CHRONICLE_ID&DMS_VLAB=

CURRENT

This DRL will retrieve the current version of the document whose
i_chronicle_id is 0900218d8003413e from the Docbase Docbase1.

Here is a sample DRL that uses the DMS_OBJECT_SPEC=OBJECT_ID syntax:

Docbase1:/0900218d800c4178?DMS_OBJECT_SPEC=OBJECT_ID

Chapter 5 – Proven Solutions for Common Tasks

211

This DRL simply retrieves the object with r_object_id of
0900218d800c4178 from Docbase Docbase1 .

The following makeDRL() function demonstrates how to create a DRL
programmatically. The function takes the object Id of the object as its only
argument. The function saves the DRL file in your default, temporary directory*,
and returns its fully qualified name to the function's caller. Your project must
reference the Microsoft Scripting Runtime library to run this code.

Source Code A working example of this source code can be found in the "Chapter5/DRL"
directory of the source code archive.

Function makeDRL(objid As String) As String
 Dim sobj As IDfSysObject
 Dim drl As String

 ' Microsoft Scripting Runtime
 Dim drlFile As FileSystemObject
 Dim drlText As TextStream
 Dim drlFolder As folder

 ' get the object
 Set sobj = session.GetObject(cx.getId(objid))

 ' build the drl string
 drl = session.getDocbaseName & ":/" _
 & sobj.getChronicleId.toString _
 & "?DMS_OBJECT_SPEC=CHRONICLE_ID&DMS_VLAB" _
 & "=CURRENT&DMS_BRKR=" & session.getDocbrokerMap._
 & getString("host_name")

 ' build the drl file
 Set drlFile = New FileSystemObject

 ' get temp path from the TMP environment variable.
 Set drlFolder = drlFile.GetSpecialFolder(TemporaryFolder)

 ' give it the same name as the object + a DRL extension
 Set drlText = drlFolder.CreateTextFile(sobj.getObjectName _
 & ".drl")

* Your default temporary directory is the value stored in the TMP environment variable. To view the value of this variable,
type set in a command window.

Chapter 5 – Proven Solutions for Common Tasks

212

 ' write drl to file
 drlText.Write (drl)
 drlText.Close

 ' return fully qualified filename
 makeDRL = drlFolder.Path & "\" & sobj.getObjectName & ".drl"

End Function

This technique was presented as a function because it will be used by other
examples in this chapter. If you were to call this function and pass it an object Id,
you would find a file in your default temporary directory with an icon and an
extension of .DRL. Double-clicking the file would cause the Documentum
Desktop to launch and retrieve the object from the Docbase.

5.13 Sending E-Mail From A Documentum
Desktop Application

A question I hear frequently is “How can I send e-mail from my Documentum
application?” There are several answers to this question. If you want to send e-
mail from an application running on a client computer, and that computer uses
Microsoft Outlook for its e-mail, you can employ this solution.

This solution demonstrates how to send a Documentum Resource Locator (DRL)
in an e-mail message. It takes advantage of Microsoft OLE Automation to send
the e-mail using the Microsoft Outlook Object Library. This solution is really
more about OLE Automation than Documentum. The only Documentum specific
parts of the code are those that compose the content of the e-mail body and
generate the DRL file to attach. Note I use the makeDRL() function discussed
in the previous section to create the DRL file to attach to the message. If possible,
you should send DRLs in e-mail as opposed to actual content. This preserves the
access control on the content and reduces the load on the network.

This code snippet assumes an object with Id of 0900218d800794d1, and
utilizes the Microsoft Outlook Object Library, so make sure it is referenced it in
your project file.

Chapter 5 – Proven Solutions for Common Tasks

213

Source Code A working example of this source code can be found in the "Chapter5/E-
mail" directory of the source code archive.

Dim sobj As IDfSysObject
Dim drl As String

' Microsoft Outlook Object Library
Dim OLapp As Outlook.Application
Dim eMail As Outlook.MailItem
Dim drlFile As Attachments

' get the object – assume you already know the object id
Set sobj = session.GetObject(cx.getId("0900218d800794d1"))

' create email
Set OLapp = New Outlook.Application
Set eMail = OLapp.CreateItem(olMailItem)
Set drlFile = eMail.Attachments

' build email
eMail.To = "someone@microsoft.com"
eMail.Subject = "DRL to Docbase object '" & sobj.getObjectName _
 & "'"
eMail.Body = "Attached is the Documentum Resource Locator " _
 & "(DRL) to '" & sobj.getObjectName & "'. Click it to " _
 & "retrieve the object."

' attach DRL file to email–call makeDRL
drlFile.Add makeDRL(sobj.getObjectId.toString)

' send the email
' Note: Windows will warn you before programmatically sending
' e-mail!

eMail.Send

Windows will display a message when you run this code warning that an
application is sending e-mail. Click Yes to send the email. Alternatively, you
can use the Outlook.MailItem.Display() method to send the e-mail
instead of Outlook.MailItem.Send(). The Display() method will
display the e-mail message in Outlook, and require the user to click the Send
button to send the message.

Chapter 5 – Proven Solutions for Common Tasks

214

5.14 Finding The Folder Path From An
Object Id

A common practice is to display an object's folder path, or location, in the
Docbase when you are displaying a list of objects from which a user needs to
choose (e.g., search results). The more context you can give the user, the easier
their choices. Often, simply knowing which folder an object is in can be enough
context. Unfortunately, the folder path is not included as part of a document
object's attributes. To obtain it, you have to determine which folder contains the
object and return the path information from the folder object. There are two easy
ways to do this: one using DQL, and one using the DFC. This section will discuss
the DFC technique. The DQL technique was discussed in Chapter 3, Working
with Queries and Collections.

The following code snippet assumes the document is only contained in one folder.
The ramifications of this assumption are discussed later. It also supposes the
document in question has an object Id of 0900218d80034d35.

Source Code A working example of this source code can be found in the
"Chapter5/Folder Path" directory of the source code archive.

Dim fObj As IDfFolder
Dim sObj As IDfSysObject
Dim folder As String

Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

Set fObj = session.GetObject(sObj.getFolderId(0))
folder = fObj.getFolderPath(0)
MsgBox folder, vbInformation, "Folder Path 0"

Notice the only folder path retrieved from the IDfFolder object is the first one
(index position 0). Though this is probably OK in most situations, it really limits
this code's usability. What would happen if the document was linked to two
folders? You would not know using this technique. A more general solution
would be to put all the folder paths into an IDfList object. This would allow the
rest of the application code to easily manipulate them. The following snippet
demonstrates this idea.

Chapter 5 – Proven Solutions for Common Tasks

215

Source Code A working example of this source code can be found in the
"Chapter5/Folder Path" directory of the source code archive.

Dim fObj As IDfFolder
Dim sObj As IDfSysObject
Dim folders As IDfList
Dim i As Integer
Dim tmp As String

Set folders = cx.getList()
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' get all folder paths
For i = 0 To sObj.getFolderIdCount – 1

 ' !! EXPENSIVE !!
 Set fObj = session.GetObject(sObj.getFolderId(i))

 folders.appendString fObj.getFolderPath(0)
Next i

' display folder paths
For i = 0 To folders.getCount - 1
 tmp = tmp & vbCrLf & folders.getString(i)
Next i

MsgBox tmp, vbInformation, "Folder Path List"

This code snippet puts all the object's folder paths into the IDfList object where
they can be easily accessed and used by other parts of the code. Though more
thorough, this code snippet does not perform well because it fetches each
dm_folder object only to retrieve an attribute (r_folder_path[i]). You
will recall that this practice was discussed in Chapter 3, Working with Queries
and Collections. A better approach is to use a query to retrieve just the
r_folder_path attribute from the folder object. This idea is demonstrated
below.

Dim fObj As IDfFolder
Dim sObj As IDfSysObject
Dim folder As String
Dim folders As IDfList
Dim i As Integer
Dim tmp As String
Dim q As IDfQuery

Chapter 5 – Proven Solutions for Common Tasks

216

Dim col As IDfCollection
Dim j As Integer

Set folders = cx.getList()
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' get all folder paths
For i = 0 To sObj.getFolderIdCount - 1
 Set q = cx.getQuery
 q.setDQL ("select r_folder_path from dm_folder where " _
 & "r_object_id = '" & sObj.getFolderId(i) & "'")
 Set col = q.execute(session, 0)

 While (col.Next)

 ' get each value of repeating string
 For j = 0 To col.getValueCount("r_folder_path") - 1
 folders.appendString col.getRepeatingString _
 ("r_folder_path", j)
 Next j
 Wend
Next i

' display folder paths
For i = 0 To folders.getCount - 1
 tmp = tmp & vbCrLf & folders.getString(i)
Next i

MsgBox tmp, vbInformation, "Folder Path List"

Though this code is a bit longer and is not as straightforward to read as the first
example, it does perform much better, especially when high volumes are
involved.

5.15 Creating Docbase Paths
Creating folder paths programmatically, based upon an object's attributes (or any
other data), can be tricky. Paths have to be created incrementally, one folder at a
time. There is no DFC method equivalent of mkdir -p*, which takes a long

* mkdir is a Unix command that allows you to create deep directory structures. For example, you could say: mkdir -p
/News/2004/Jan/01 and the mkdir command would make all the necessary directories automatically instead of
forcing you to create News, and then 2004, and then Jan, and then 01.

Chapter 5 – Proven Solutions for Common Tasks

217

folder path, parses it, and creates the necessary folders along the way. That is the
reason I created the dmMkDir() function. This function takes a folder path as a
string argument (e.g., "/News/2004/Jan/01") and creates each cabinet or
folder that is necessary until it can return the object Id of the folder with
r_folder_path(0) equal to "/News/2004/Jan/01."

For example, suppose you have a program reading live news stories from the
Internet. Your program captures the content, parses it, processes it, and extracts
data that it assigns to the object's attributes. To simplify the management of these
thousands of stories, you decide to store them in the Docbase according to their
date. Your folder hierarchy might look like this.

/News/2004/Jan/01
/News/2004/Jan/02
 . . .
/News/2004/Dec/30
/News/2004/Dec/31

The program that captures the stories from the Internet knows where to save them
based upon the stories' metadata. But, what if the folder doesn't exist yet?
Suppose that during the processing of a story, the clock moved from Jan 31, 2004
to Feb 1, 2004. The program needs to create the Feb folder as well as the /01
folder (i.e., /News/2004/Feb/01). That is were the dmMkDir() function
comes in, you feed it a path and it creates it in the Docbase.

The dmMkDir() function requires two arguments:

• A session object used to create the cabinet and folder objects,
• The complete path as a string.

The first thing this function does is determine if the folder path already exists. If
it does, it exits the function and returns the folder's object Id. For example, if the
folder /News/2004/Jan/02 exists, dmMkDir() returns the
r_object_id for the /02 dm_folder object. If the folder doesn't exist,
it parses the path and processes each folder sequentially. If any folder in the path
already exists, that folder is skipped. Ultimately, the r_object_id for the
/02 dm_folder object is returned.

Chapter 5 – Proven Solutions for Common Tasks

218

For example, assume /News/2004/Jan/01 exists, but /News/2004/
Jan/02 does not. dmMkDir() functions like this:

1. /News/2004/Jan/02 does not exist, so continue
2. /News exists, skip it
3. /News/2004 exists, skip it
4. /News/2004/Jan exists, skip it
5. /News/2004/Jan/02 does not exist. Create folder named /02, and

link it to folder /Jan.
6. Return object Id for folder /02.

The function returns the object Id of the deepest folder created or the null object
Id (0000000000000000) if an error occurs. Note that since dmMkDir() uses
the error trapping code discussed earlier in this chapter, the Win32 API method
getDesktopWindow() must be declared prior to calling this function.

Source Code A working example of this source code can be found in the
"Chapter5/dmMkdir" directory of the source code archive.

' Win32 API
Public Declare Function GetDesktopWindow Lib "user32" () As Long

Function dmMkDir(session As IDfSession, docPath As String) As
String
 Dim dirs() As String
 Dim dm_path As String
 Dim i As Integer
 Dim j As Integer
 Dim tmp_path As String
 Dim reporter As New DcReport
 Dim fObj As IDfFolder

 ' init to null obj id
 dmMkDir = "0000000000000000"

 On Error GoTo HandleError

 ' check if path already exists
 Set fObj = session.getObjectByPath(docPath)

 ' if path doesn't exist, continue
 If (fObj Is Nothing) Then

Chapter 5 – Proven Solutions for Common Tasks

219

 ' chop off leading /
 If (Left(docPath, 1) = "/") Then
 docPath = Right(docPath, Len(docPath) - 1)
 End If

An easy way to parse the directory path into its constituent folders is to use the
Visual Basic Split() function, and split the path on the "/" character.
Split() returns an array that you can then process sequentially.

 ' create array of dir names
 dirs = Split(docPath, "/", -1, vbTextCompare)

 ' Test each hierarchical path for existence
 For i = 0 To UBound(dirs)
 dm_path = dm_path & "/" & dirs(i)

 ' does partial path exist?
 Set fObj = session.getObjectByPath(dm_path)

 ' if not, create it
 If (fObj Is Nothing) Then

 ' if first dir, create cabinet
 If (i = 0) Then
 Set fObj = session.newObject("dm_cabinet")
 Else
 Set fObj = session.newObject("dm_folder")
 End If
 'Set sObj = pObj

 ' set object name to dir name
 fObj.setObjectName dirs(i)

If the folder isn't a cabinet (cabinets can only exist at the root level), it is linked to
its parent folder.

 ' link it to the path above it
 tmp_path = dm_path

 ' if first dir, its a cabinet and doesn't get
 ' linked
 If (i > 0) Then
 j = Len(dirs(i)) + 1
 tmp_path = "'" & Left(dm_path, _

Chapter 5 – Proven Solutions for Common Tasks

220

 & (Len(dm_path) - j)) & "'"
 fObj.link tmp_path
 End If

 ' save new object
 fObj.save

 ' return obj id of created object
 dmMkDir = fObj.getObjectId.toString

 End If
 Next i
 Else
 ' return obj id of passed in path
 dmMkDir = fObj.getObjectId.toString
 End If

The dmMkDir() function assumes it is operating in the context of an application
that uses forms. This is manifest in the fact that the error trapping code makes use
of the DcReporter and the getDesktopWindow() Win32 API method. To
operate in a non-form or non-UI environment, you will need to change the error
trapping code.

HandleError:
 ' assume GUI environment and Win32 API GetDesktopWindow() is
 ' declared

 Dim r As New DcReport
 Dim e As IDfException

 If (Len(Err.Description) > 0) Then
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

End Function

To use dmMkDir(), call it with a session and path, like this:

Dim folder_id As String
folder_id = dmMkDir(session, "/News/2004/Jan/02")

Chapter 5 – Proven Solutions for Common Tasks

221

5.16 Working With The Inbox
A handy feature of Documentum is the Inbox. It is used for many things, one of
which is notifications. Notifications are similar to e-mails in the Docbase. You
may receive notification that a job completed or a workitem completed–or is past
due. If you have played with events in the Docbase, you have noticed that the
Docbase can send you a notification when an event occurs. It’s a very handy
communication tool and easy to use, yet often the subject of many questions.
This section will help familiarize you with the Inbox and how to manipulate it
using the DFC.

Notifications are sent to the Inbox using the IDfSysObject.queue()
method, and are removed from the Inbox using the IDfSession.dequeue()
method. Making the queue() method specific to an IDfSysObject allows the
object to include a lot of information about itself in the notification, for example:
its object Id, object type, and content type. If it didn’t, you would have to set
these attributes manually every time you created a notification. Conversely, the
dequeue() method is not specific to any object but rather a user’s session.
Therefore, objects can be deleted on a per-session basis, en masse, as opposed to
singularly from their originating dm_sysobject objects.

The following code snippet demonstrates three things: sending a notification to a
user’s Inbox; displaying a notification in a user's Inbox; and deleting a
notification from a user's Inbox.

To begin, this code fetches a document object from the Docbase. This example
assumes the document's Id is 0900218d80034d35. One of the input
arguments for the queue() method is the due date of the contained workitem.
Though this notification isn’t associated with a workflow or specific activity, it
could be. Therefore, to satisfy the required argument, create an IDfTime object
and initialize it for five days in the future. Then, send the notification by calling
the queue() method and passing the required arguments.

Source Code A working example of this source code can be found in the
"Chapter5/Inbox" directory of the source code archive.

Dim sObj As IDfSysObject
Dim timeObj As IDfTime

Chapter 5 – Proven Solutions for Common Tasks

222

Dim idObj As IDfId
Dim q As IDfQuery
Dim col As IDfCollection
Dim answer As Long

' get the object
Set sObj = session.GetObject(cx.getId("0900218d80034d35"))

' set due date 5 days in the future
Set timeObj = cx.getTime(DateAdd("d", 5, Now), "mm/dd/yyyy")

' send notification (queue item) to inbox
Set idObj = sObj.queue("dmadmin", "Sub sendNotification", 1, _
 & False, timeObj, "This is a test message generated by the" _
 & " test program.")

Once a notification is in the Inbox, a simple query can be used to retrieve it. This
code displays a message box containing some of the notification’s attribute data.

' query for inbox items
Set q = cx.getQuery
q.setDQL "select * from dmi_queue_item where name = user and " _
 & "delete_flag = false"
Set col = q.execute(session, DF_READ_QUERY)

' display inbox item attributes
While (col.Next = True)
 answer = MsgBox("Item in Inbox:" & vbCrLf & vbCrLf _
 & "Sent: " & col.getString("date_sent") & vbCrLf _
 & "Due : " & col.getString("due_date") & vbCrLf _
 & "Event: " & col.getString("event") & vbCrLf _
 & "Message: " & col.getString("message") & vbCrLf _
 & vbCrLf & "Would you like to DeQueue it?", _
 & vbYesNo, "Inbox")

This last portion of code removes notifications from the inbox using the
dequeue() method.

 ' dequeue item?
 If (answer = vbYes) Then
 session.dequeue cx.getId(col.getString("r_object_id"))
 End If

Wend
col.Close

Chapter 5 – Proven Solutions for Common Tasks

223

End Sub

The result of running this code snippet is a Yes/No dialog box as shown in Figure
5.9. Depending upon which button is clicked, the notification is removed from
the Inbox.

Figure 5.9 - Inbox Queue Item Attributes

5.17 Dumping And Loading The Docbase
Documentum supplies the Dump and Load operations to meet two needs. The
first is to easily backup and restore a Docbase. The second is to copy and/or
move a Docbase from one sever to another. Whichever is your need, Dump and
Load is the built-in answer.

Historically, Dump and Load have received a bad rap because they are not user-
friendly operations, and not always reliable. In addition, not all objects in a
Docbase can be Dumped and Loaded (e.g., workflow instances). So, a successful
Dump and Load operation can also be incomplete. Therefore, take the following
discussions and examples with caution.

The following sections demonstrate how to execute Dump and Load
programmatically by building a simple wizard, which walks you through the
process of creating the required objects and executing the operations.

Chapter 5 – Proven Solutions for Common Tasks

224

5.17.1 Dump

The Dump operation is used to archive, or export objects and content from a
Docbase to a file on the file system. This file can be kept for archival purposes,
used as a backup, or used to migrate objects from one Docbase to another. The
Dump operation is governed by a dm_dump_record object. To execute a
Dump, you simply create a dm_dump_record, set its attributes and save it.
The action of saving the dm_dump_record object executes the Dump.

Here are a few general rules to keep in mind while using the Dump operation:

• You can choose to Dump the entire Docbase or only selected objects.
• You can include the content or only dump the metadata.
• If you choose to include content in the Dump, you can compress it.
• Dump files are only forwardly compatible. This means you cannot create

a Dump file on a Documentum 5 Content Server and Load it into a 4i
eContent Server™. However, you can Load a 4i eContent Server Dump
file into a Documentum 5 Content Server.

• You should always run the dm_DMClean job before doing a Dump
operation. This will prevent outdated files from unnecessarily being
archived.

• You can Dump registered table objects but not their underlying RDBMS
tables.

• If an object type has no instantiated objects in the scope of the Dump, the
definition of the object type is not included in the Dump unless
specifically declared. This means if you have a custom object type in your
Docbase, but none of those objects are in the scope of your Dump, the
archive will not contain your custom type's definition.

• Object ACLs are included in the Dump file.
• Usually, you can restart a failed Dump operation by fetching and re-saving

the Dump object.

The attributes of the dm_dump_record object and an explanation of their
values are contained in Table 5.9.

Chapter 5 – Proven Solutions for Common Tasks

225

Table 5.9 - dm_dump_record Attributes To Configure Dump Operation

dm_dump_record
Attribute

Explanation

file_name Holds the fully qualified name of the file on the file
system to which the dump will be written. This file
must be a new file (i.e., it cannot currently exist),
and its path is relative to the server, not the client.

dump_operation Set this attribute to full_docbase_dump to
execute a full Dump of the Docbase. The Content
Server will ignore the values of type,
predicate, and predicate2 attributes when
this value is set. If you do not want to Dump the
entire Docbase, leave this attribute blank.

include_content Set this attribute to true if you want the Content
Server to include the content files in the Dump file.
You should always choose to include content if you
are making a backup of the Docbase. The default
value of this attribute is false.

dump_parameter Set this attribute to one of three string expressions,
or leave it blank. Note that these attributes are all
name-value pairs.

• compress_content = T/F – this
expression causes the content to be
compressed, thus saving space in the archive
file. Possible values are T (true) or F (false)

• cache_size = ### – this expression
sets the size of the cache in megabytes.
Possible values are 1 – 100; the default
value is 1. Increasing the cache size can
improve performance on large Dumps.

• restartable = T/F – this expression
toggles the restartable nature of a Dump: on
(T) or off (F). In case of failure, restartable
Dumps can be restarted at the point of
failure. Setting restartable = F can
improve performance.

Chapter 5 – Proven Solutions for Common Tasks

226

The next three attributes are all repeating attributes that work together. The value
at each index position of each attribute work together to qualify objects for
inclusion. These attributes are discussed in Table 5.10.

Table 5.10 - dm_dump_record Attributes To Select Objects

dm_dump_record
Attribute

Explanation

type A repeating attribute that contains a list of all object
types to Dump. It works in conjunction with the
predicate and predicate2 attributes to
determine which objects to Dump. The Dump
operation will dump all of the object types–as
qualified by predicate and predicate2–
listed in the type attribute as well as all of their
subtypes and referenced objects.

predicate A repeating attribute that contains WHERE clauses
that qualify each of the associated object types
listed in the type attribute. Each type listed in the
type attribute must have an associated predicate.
To ensure all objects of a particular type are
Dumped, you can use a predicate that always
evaluates to true, like 1 = 1.

predicate2 A repeating attribute that contains continuations of
the WHERE clauses started in the predicate
attribute and exceed 255 characters in length.

To illustrate this idea of three repeating attributes working together to determine
which objects to include in the Dump file, consider the Table 5.11. The table
shows the seven attributes of a dm_dump_record object and their values.

From this table we can determine this is not a full Docbase dump (the
dump_operation attribute is empty); the content files will be included in the
Dump file (the include_content attribute is set to T); and the content will be
compressed (the dump_parameter attribute contains
compress_content=T). Examining the values in the 0th position of the three
repeating attributes we can determine that all of the dm_folder objects in, and
below, the /Temp folder will be included. Similarly, looking at the values in the

Chapter 5 – Proven Solutions for Common Tasks

227

1st positions, the dm_documents will also be included. Finally, looking at the
values in the 2nd positions we see all of the regional_docs in the Docbase
will be Dumped since the predicate in the 2nd position will always be true. Note it
was not necessary to use the predicate2 attribute because the predicate
statements were shorter than 255 characters.

Table 5.11 – dm_dump_record Dump

Attribute Name Index Attribute Value
file_name D:\Documentum\data\dump1.dmp

dump_operation
include_content T
dump_parameter compress_content = T

type [0] dm_folder
[1] dm_document
[2] regional_doc

predicate [0] FOLDER('/Temp',DESCEND)
[1] FOLDER('/Temp',DESCEND)
[2] 1=1

predicate2 [0]
[1]
[2]

If we combine the content of the three repeating attributes into DQL predicates, it
becomes much clearer how they work together, and what their intent is:

• dm_folder where FOLDER('/Temp',DESCEND),
• dm_document where FOLDER('/Temp',DESCEND),
• regional_doc where 1=1.

Dump scripts are usually written as text files using the Documentum API. In fact,
all of the Dump examples in the Documentum Content Server Administrator’s
Guide are given as API scripts. This is by far the easiest and most effective way
to create these scripts. However, API code is not object-oriented and not much
fun to write. Instead, I will demonstrate the Dump operation using Visual Basic
and the DFC to implement a very simple Dump Wizard. The Dump Wizard will
prompt you to enter values for each of the seven necessary attributes, save them,
display the dm_dump_record, and save it (execute the Dump). Afterward, the

Chapter 5 – Proven Solutions for Common Tasks

228

wizard will display the number of records Dumped and destroy the
dm_dump_record object.

This example begins by logging into the Docbase using the Login Manager as
discussed in Section 5.2, Login Using the Login Manager, and then prompting
you for the name of the Dump file to create.

Source Code A working example of this source code can be found in the
"Chapter5/dumpWiz" directory of the source code archive.

Private loginMgr As DcLoginManager
Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession
Private sessionID As String

Private pObj As IDfPersistentObject
Private rv As Long

Sub Main()

 ' login
 Set loginMgr = New DcLoginManager

 ' if no session, login
 If (sessionID = "") Then
 sessionID = loginMgr.Connect("", "", "", "", 0)
 End If

 ' if still no session, error out
 If (sessionID = "") Then
 MsgBox "Could not Log In.", vbCritical, "Could Not Login"
 Set loginMgr = Nothing
 End
 Else
 ' set up dfc
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionID)
 End If

 ' create dump record object
 Set pObj = session.newObject("dm_dump_record")

 ' get file name

Chapter 5 – Proven Solutions for Common Tasks

229

 pObj.setString "file_name", InputBox("Enter fully " _
 & "qualified dump filename. Remember, this path is " _
 & "in relation to the server, not the client.", "File _
 & "Name")

Remember the path and filename you enter are relative to the server. For
example, if you enter C:\dump1.dmp, this file will be written on the server’s
root directory, and not your workstation's. This is especially important to
remember if you are writing to a network share. The server must be able to reach
the network share. Next, you are prompted for a full Docbase dump, followed by
prompts for the remaining attributes.

 ' full docbase dump
 rv = MsgBox("Is this a full Docbase dump?", vbYesNo, _
 & "Full Docbase Dump")
 If (rv = vbYes) Then
 pObj.setString "dump_operation", "full_docbase_dump"
 End If

Of course, answering yes to the “Is this a full Docbase dump?” question renders
the rest of the inputs unnecessary, but the wizard forces you to answer them
anyway.

 ' include content
 rv = MsgBox("Include Docbase content?", vbYesNo, "Docbase " _
 & "Content")
 If (rv = vbYes) Then
 pObj.setBoolean "include_content", True

 ' compress content
 rv = MsgBox("Compress Docbase content?", vbYesNo, _
 & "Compress Content")
 If (rv = vbYes) Then
 pObj.setString "dump_parameter", "compress_content=T"
 End If

 Else
 pObj.setBoolean "include_content", False
 End If

In the following loop, the wizard doesn’t check the length of the predicate string
to see if it is longer than 255 characters. It assumes it’s not, and never prompts
for the predicate2 attribute.

Chapter 5 – Proven Solutions for Common Tasks

230

 ' loop to create predicates
 rv = vbYes
 While (rv = vbYes)

 ' type
 pObj.appendString "type", InputBox("Enter object type " _
 & "to dump",.Object Type")

 ' predicate
 pObj.appendString "predicate", InputBox("Enter " _
 & " predicate (less than 255 chars).", "Predicate")

 rv = MsgBox("Enter another type to dump?", vbYesNo, _
 & "Another Type")

 Wend

Saving the dm_dump_record executes the Dump operation. Depending on
your inputs, this could be a lengthy operation. This example provides no
feedback during the Dump. However, the dm_dump_record object is updated
periodically during the Dump operation with statistics regarding its progress. It is
possible to provide feedback during the Dump, but the Dump operation blocks the
thread, so the the feedback mechanism must run outside of the thread running the
Dump. One possibility is to use the Sentinel class described in Section 5.10,
Using the Progress Sentinel.

 ' save and do dump
 rv = MsgBox("SUMMARY OF DUMP OBJECT" & vbCrLf & vbCrLf _
 & pObj.dump & vbCrLf & vbCrLf _
 & "SAVE DUMP OBJECT?", vbYesNo, "Save")
 If (rv = vbYes) Then

 ' saving the dm_dump_record executes the Dump!
 Screen.MousePointer = vbHourglass
 pObj.save
 Screen.MousePointer = vbDefault

The last few steps in the wizard check for errors, display a message, and destroy
the dm_dump_record object. You should always destroy these objects when
the Dump is completed to clean up the Docbase and remove object records and
state information that is no longer needed.

Chapter 5 – Proven Solutions for Common Tasks

231

 ' report messages
 If (Len(session.getMessage(3)) > 0) Then
 MsgBox "MESSAGES:" & vbCrLf & vbCrLf _
 & session.getMessage(3), vbInformation, "Messages"
 End If

 ' total dumped
 MsgBox "Successfully Dumped: " _
 & pObj.getInt("r_current_object_count") _
 & " objects", vbInformation, "Count"
 End If

 ' destroy the dump record object
 pObj.destroy
End Sub

This example demonstrated once you understand the dm_dump_record object
and its attributes, performing a Dump is a rather easy task. For a more
information regarding Dump, see the Documentum Content Server
Administrator’s Guide.

5.17.2 Load

The counterpart of the Dump operation is Load. The Load operation reads objects
and content from a Dump file and recreates them in a new or existing Docbase.

Here are a few general rules to keep in mind while using the Load operation:

• You should always run the Documentum preload.exe utility with the
script_file argument on Dump files before Loading them. See the
Documentum Content Server Administrator’s Guide for more details
regarding preload.

• Run the script generated by preload or otherwise ensure all of the
necessary storage locations exist before executing a Load operation.

• By default, the Load operation does not overwrite any pre-existing objects
in the Docbase. This is a safety feature to prevent corruption of key
Docbase objects, which could render the Docbase unusable (e.g.,
everything in the /System cabinet).

• The server will not allow a Load operation to execute within an explicit
transaction.

Chapter 5 – Proven Solutions for Common Tasks

232

• Usually, you can restart a failed Load operation by fetching and re-saving
the Load object.

The Load operation is very similar to the Dump operation. It is governed by a
dm_load_record object and the values of its attributes. Like Dump, to
execute a Load, you simply create a dm_load_record, set its attributes and
save it. The action of saving the object executes the operation. The
dm_load_record's three key attributes and an explanation of their values are
contained in Table 5.12.

Table 5.12 - dm_load_record Attributes To Configure Load Operation

dm_load_record
Attribute

Explanation

file_name Holds the fully qualified name of the file on the file
system to Load. This file must to be accessible by
the server.

load_parameter Set this attribute to preserve_replica =
T/F or leave it blank. When set to T (true), the
preserve_replica parameter ensures the
server loads objects marked as replicas in the Dump
file, as replicas in the new Docbase. Note the value
of this attribute is a name-value pair.

relocate Set this attribute to true if you want the server to
assign new object Ids to all of the objects it loads.
Set this attribute to false if you want the server to
use each object’s original Id. Setting this attribute
to false can result in invalid object Ids and
duplicate objects. The default is true.

Because of their simplicity, Load scripts are usually written as text files using the
Documentum API. In fact, all of the examples in the Documentum Content
Server Administrator’s Guide are given as API scripts. This is by far the easiest
and most effective way to create Load scripts. But, as with the Dump scripts,
where’s the fun in that? So, instead, I will demonstrate the Load operation using
Visual Basic and the DFC to implement a very simple Load Wizard. The Load
wizard will prompt you to enter values for each of the three necessary attributes,
save them, display the dm_load_record, and save it (execute the Load).

Chapter 5 – Proven Solutions for Common Tasks

233

Afterward it will display the number of records Loaded and destroy the
dm_load_record object.

This example begins by logging into the Docbase using the Login Manager as
discussed in Section 5.2, Login Using the Login Manager, and then prompting
you for the name of the file to Load.

Source Code A working example of this source code can be found in the
"Chapter5/loadWiz" directory of the source code archive.

Private loginMgr As DcLoginManager
Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession
Private sessionID As String

Private pObj As IDfPersistentObject
Private rv As Long

Sub Main()

 ' login
 Set loginMgr = New DcLoginManager

 ' if no session, login
 If (sessionID = "") Then
 sessionID = loginMgr.Connect("", "", "", "", 0)
 End If

 ' if still no session, error out
 If (sessionID = "") Then
 MsgBox "Could not Log In.", vbCritical, "Could Not Login"

 Set loginMgr = Nothing
 End
 Else
 ' set up dfc
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionID)
 End If

 ' first, warn about preload utility
 MsgBox "You must run the preload.exe program on your dump " _
 & "file prior to Loading. The preload.exe syntax is:" _

Chapter 5 – Proven Solutions for Common Tasks

234

 & vbCrLf & vbCrLf & "preload <docbase> -U<username> " _
 & "-P<password> -dump_file <dump file> -script_file " _
 & "<script file>" & vbCrLf & vbCrLf & "Then run " _
 & "<script file> in the iAPI32.exe editor", _
 & vbInformation, "Run preload.exe"

 ' create load record object
 Set pObj = session.newObject("dm_load_record")

 ' get file name
 pObj.setString "file_name", InputBox("Enter fully " _
 & "qualified dump filename. Remember, this path is " _
 & "in relation to the server, not the client.", "File " _
 & "Name")

Remember the path and filename you enter are relative to the server. For
example, if you enter C:\dump1.dmp, the server will search its root directory
for this file–not your workstation's. This is especially important to remember if
you are reading from a network share, the server must be able to reach the
network share. Next, you are prompted for values for the remaining attributes.

 ' set load parameters
 pObj.setString "load_parameter", InputBox("Enter the load " _
 & "parameter: preserve_replica = true/false", "Load " _
 & "Parameter")

 ' set relocate
 rv = MsgBox("Set the relocate attribute to TRUE?",vbYesNo, _
 "Relocate")

 If (rv = vbYes) Then
 pObj.setBoolean "relocate", True
 Else
 pObj.setBoolean "relocate", False
 End If

Saving the dm_load_record executes the Load operation. Depending upon
the size of the Dump file you are processing, this could be a lengthy operation.
This example provides no feedback to you during the Load. Like the
dm_dump_record, the dm_load_record object is updated periodically
during the Load operation with statistics regarding its progress. Again, it is
possible to use the Sentinel class to provide feedback during the Load operation.

 ' save and do load

Chapter 5 – Proven Solutions for Common Tasks

235

 rv = MsgBox("SUMMARY OF LOAD OBJECT" & vbCrLf & vbCrLf _
 & pObj.dump & vbCrLf & vbCrLf & "SAVE LOAD " _
 & "OBJECT?", vbYesNo, "Save")
 If (rv = vbYes) Then

 ' saving the dm_load_record executes the Load!
 Screen.MousePointer = vbHourglass
 pObj.save
 Screen.MousePointer = vbDefault

The last few steps in the wizard check for errors, display a message, and destroy
the dm_load_record object. You should always destroy these objects when
the Load is completed to clean up the Docbase, and remove object records and
state information that is no longer needed.

 ' report messages
 If (Len(session.getMessage(3)) > 0) Then
 MsgBox "MESSAGES:" & vbCrLf & vbCrLf _
 & session.getMessage(3), vbInformation, _
 "Messages"
 End If

 MsgBox "Loaded completed " _
 & pObj.getString("r_end_time"), vbInformation, _
 "Completed"

 End If

 ' destroy the load record object
 pObj.destroy
End Sub

If the Load operation fails and you want to start over cleanly, you can remove the
objects added before the failure using the Documentum API. Issue a fetch()
command and then a revert() command in the API editor. Like this:

API> fetch,c,<load_object_id>
API> revert,c,<load_object_id>

Where <load_object_id> is the r_object_id of the
dm_load_record.

Chapter 5 – Proven Solutions for Common Tasks

236

This example demonstrates that once you understand the dm_load_record
object and its attributes, performing a Load is a rather easy task. For a more
information regarding Load, see the Documentum Content Server Administrator’s
Guide.

I encourage you to run the Dump and Load wizards presented here and take
careful note of which objects can and cannot be Dumped and Loaded. Dump and
Load can be a useful utility, but you must be aware of its limitations.

5.18 Implementing A Simple Search Form
In the final section of this chapter, I demonstrate how to implement a simple
search form. I call it simple because it’s not as comprehensive as Documentum’s
Find component, but it is more sophisticated than just a single field used in a full-
text search. Implementation of a search form like this is common, and a frequent
topic of discussion.

This search form will provide three specific fields to search against: Name,
Author, and Content Size. The user can AND/OR the fields together and select
equal (=), greater than (>), or less than (<) operators for the Content Size field.
To provide a more complete example, I did not use the IDfQueryMgr, but instead
used the IDfQuery and IDfCollection classes, and explicitly coded all of the logic.
As discussed earlier, it is easy to use the IDfQueryMgr and would be a simple
task to map input values from the form to properties in the IDfQueryMgr object.
However, I don’t like how the IDfQueryMgr returns its results.

5.18.1 The Form

The form for this example is shown in Figure 5.10. The top section of the form
contains TextBoxes for the entry of Name and Author values, as well as radio
buttons to toggle the And/Or conjunction between them. It also contains a
ComboBox to select a comparison operator and a TextBox to enter Content Size.
You can search on one, two, or all three attributes by entering values in the fields.

One interesting feature of this form is that by selecting the Display? CheckBox
next to either the Name or Author field, will cause that field to appear in the
results, but not be used as search criteria. For example, you can search for all

Chapter 5 – Proven Solutions for Common Tasks

237

objects named "Constitution" with content size greater than 0, and return their
authors by entering "constitution" in the Name field, > 0 in the Content
Size fields, and selecting the Display? CheckBox next to the Author field (see
Figure 5.10).

Figure 5.10 - Simple Search Form

The middle section of the form is just a large TextBox. When the query button is
clicked, the form will post the DQL query string it generates to this TextBox.
This doesn’t serve any purpose other than allowing you to observe how the query
string was constructed based upon your inputs.

The bottom section of the form contains a ListView control. The results of the
query are displayed in the ListView control, similar to a spreadsheet.

Table 5.13 lists the screen controls used in the form. Knowing the names and
types of these controls will help you read the code more easily.

Chapter 5 – Proven Solutions for Common Tasks

238

Table 5.13 - Form Controls

Control Name Control Type Purpose
txt_Name TextBox Name field
cb_name CheckBox Display name in results?
rb_And1 Radio Button "And" radio button for

conjunction set 1
rb_Or1 Radio Button "Or" radio button for

conjunction set 1
txt_Author TextBox Author field
cb_author CheckBox Display author in results?
rb_And2 Radio Button "And" radio button for

conjunction set 2
rb_Or2 Radio Button "Or" radio button for

conjunction set 2
cbx_Operator ComboBox Comparison operator for content

size
txt_Size TextBox Content size
btn_doQuery Button Button to run query
txt_QueryString TextBox TextBox to display DQL string
lv_Results ListView ListView to display results

5.18.2 The Code

The code for this form starts in the typical fashion. It assumes a login occurred in
the main program and the sessionID variable is passed into the form. The
Form_Load() subroutine then creates local instances of the DFC client and
session variables. Since this code snippet uses the session locking and error
trapping routines discussed earlier in this chapter, your project must reference the
Documentum Desktop Client Utilities Manager Type Library and include the
DcSessionLock.cls class file.

Source Code A working example of this source code can be found in the
"Chapter5/Simple Search" directory of the source code archive.

' frm_Search

' passed in
Public sessionID As String

Chapter 5 – Proven Solutions for Common Tasks

239

' global to form
Private client As IDfClient
Private cx As DFCLib.DfClientX
Private session As IDfSession

Private Sub Form_Load()

 ' setup DFC client vars
 If (sessionID = "") Then
 MsgBox "You must set the sessionID property of the " _
 & "form before showing it", vbExclamation, _
 "No Session"
 Exit Sub
 End If

 Set cx = New DFCLib.DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionID)

End Sub

Clicking the Query button is when all the action in this form happens, so let’s
look at the code that handles that event.

In the btn_DoQuery_Click() subroutine, three strings are built:
strSelect, strWhere, and strDQL. strSelect will contain the select
portion of the query, strWhere will contain the predicate of the query, and
strDQL will contain the finished query statement. The code starts by adding
r_object_id to the strSelect variable so every query will return the
objects' Ids. Then it processes each of the form’s input fields sequentially, from
top to bottom, starting with the Name field.

If the Name field isn’t blank, or the cb_name CheckBox was selected, then
object_name is added to the strSelect string. If the Name field isn't
blank then a condition clause is created for the strWhere string that uses the
like operator and the value of the Name field. The final bit of processing is to
determine what the conjunction should be: AND/OR. Note the conjunction is only
added to the strWhere string if the Name field isn't blank.

Private Sub btn_DoQuery_Click()
 Dim strSelect As String

Chapter 5 – Proven Solutions for Common Tasks

240

 Dim strWhere As String
 Dim strDQL As String
 Dim strTmp As String
 Dim col As IDfCollection
 Dim q As IDfQuery

 On Error GoTo HandleError

 ' always select the r_object_id
 strSelect = "r_object_id,"

 ' process name
 If ((Me.txt_Name.Text <> "") Or _
 (Me.cb_name.Value = 1)) Then
 strSelect = strSelect & "object_name,"

 If (Me.txt_Name.Text <> "") Then
 strWhere = "object_name like '%" _
 & Me.txt_Name.Text & "%' "

 ' process conjunction 1
 If (Me.rb_And1.Value = True) Then
 strWhere = strWhere & "and "
 Else
 strWhere = strWhere & "or "
 End If

 End If
 End If

The processing for the Author field is similar to the processing for the Name
field.

 ' process author
 If ((Me.txt_Author.Text <> "") Or _
 (Me.cb_author.Value = 1)) Then
 strSelect = strSelect & "authors,"

 If (Me.txt_Author.Text <> "") Then
 strWhere = strWhere & "any authors like '%" _
 & Me.txt_Author.Text & "%' "

 ' process conjunction 2
 If (Me.rb_And2.Value = True) Then
 strWhere = strWhere & "and "
 Else

Chapter 5 – Proven Solutions for Common Tasks

241

 strWhere = strWhere & "or "
 End If

 End If
 End If

Processing the fields for the Content Size are a little different from the previous
two fields. There has to be values in both the Operator field and the Size field;
otherwise, the input is ignored. If both fields contain an entry, the attribute name
is appended to the strSelect string, and a condition clause is created using the
values of the Operator field and the Content Size field. The condition clause is
then appended to the strWhere string. If either or both fields are empty,
nothing is appended to the strWhere string and we have to clean up the
unnecessary conjunction and punctuation in the strings.

 ' process content size
 If ((Me.cbx_Operator.Text <> "") And
 (Me.txt_Size.Text <> "")) Then
 strSelect = strSelect & "r_content_size"

 ' process operator and size value
 strWhere = strWhere & "r_content_size " _
 & Me.cbx_Operator.Text & " " & Me.txt_Size.Text

Cleaning up the query strings happens in the content size else block. First, the
code deletes the trailing comma in the strSelect string by testing for its
existence and then shortening the strSelect by one character. Next, it tests
for the existence of a conjunction at the end of the strWhere string, and deletes
it by shorting the strWhere string by the appropriate amount.

 Else

 ' trim trailing comma
 If (Right(strSelect, 1) = ",") Then
 strSelect = Left(strSelect, (Len(strSelect) - 1))
 End If

 ' trim trailing conjunction
 strTmp = Right(strWhere, 4)

 If (strTmp = "and ") Then
 strWhere = Left(strWhere, Len(strWhere) - 4)
 Else

Chapter 5 – Proven Solutions for Common Tasks

242

 strWhere = Left(strWhere, Len(strWhere) - 3)
 End If

 End If

Finally, the strDQL variable is assembled with the entire query string, the query
executed, and the results displayed.

 strDQL = "select " & strSelect & " from dm_sysobject " _
 & "where " & strWhere

 Set q = cx.getQuery
 q.setDQL (strDQL)

 Me.txt_QueryString.Text = strDQL

 Set sessionLock = lockSession(session, "Simple Query")
 Set col = q.execute(session, DF_READ_QUERY)
 sessionLock.ReleaseLock

 If (Not col Is Nothing) Then
 Call doResults(col)
 col.Close
 Else
 MsgBox "Query " & strDQL & " returned no results."
 End If

Note the use of the session locking code and the error handler. Both of these code
features were discussed previously in this chapter.

HandleError:
 Dim r As New DcReport
 Dim e As IDfException

 If (Len(Err.Description) > 0) Then
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 ' close an open collection
 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If

Chapter 5 – Proven Solutions for Common Tasks

243

 End If

' release session lock
If (Not sessionLock Is Nothing) Then
 sessionLock.ReleaseLock
End If

End Sub

The doResults() subroutine simply iterates over the contents of the
IDfCollection object passed into it, and builds the contents of the lv_results
control. The logic used to iterate over the collection is the same as introduced in
Chapter 3, Working with Queries and Collections. The only difference is that this
code loads the results into a ListView control.

Private Sub doResults(col As IDfCollection)
 Dim attr As IDfAttr
 Dim colName As String
 Dim colValue As String
 Dim li As ListItem
 Dim numCols As Integer
 Dim i As Integer

 ' clear lv
 Me.lv_Results.ListItems.Clear
 Me.lv_Results.ColumnHeaders.Clear

 ' get number of attrs in collection
 numCols = col.getAttrCount

 ' get column names from attrs in collection
 For i = 1 To numCols
 Me.lv_Results.ColumnHeaders.Add , , _
 col.GetAttr(i - 1).getName
 Next i

 ' iterate over collection and process each row
 While (col.Next = True)

 ' process each column in a row
 For i = 1 To numCols
 Set attr = col.GetAttr(i - 1)

 ' get value in column
 Select Case attr.getDataType

Chapter 5 – Proven Solutions for Common Tasks

244

 Case DF_BOOLEAN
 colValue = col.getBoolean(attr.getName)
 Case DF_DOUBLE
 colValue = col.getDouble(attr.getName)
 Case DF_ID
 colValue = col.getId(attr.getName).toString
 Case DF_INTEGER
 colValue = col.getInt(attr.getName)
 Case DF_STRING
 colValue = col.getString(attr.getName)
 Case DF_TIME
 colValue = col.getTime(attr.getName).toString
 End Select

 ' load listview control
 If (i = 1) Then
 Set li = Me.lv_Results.ListItems.Add _
 (, , colValue)
 Else
 li.ListSubItems.Add , , colValue
 End If

 Next i
 Wend

End Sub

Using this form is as simple as instantiating it and passing it a session Id. For
example:

Set frm = New frm_Search
frm.sessionId = sessionId
frm.Show vbModal

5.18.3 The Results

Figure 5.10 shows the result of searching the Docbase for dm_sysobjects
with a name that contains “constitution,” and has content greater than 0.
Notice Authors appears in the results even though no search criterion was entered
for it.

Chapter 5 – Proven Solutions for Common Tasks

245

5.19 Chapter Summary
This chapter demonstrated a variety of proven techniques and solutions. It has
focused on things as basic as login techniques and session passing, to things as
complicated as using the Windows registry and Dump and Load. These staples of
the trade are invaluable techniques, which all Documentum developers should
have in their repertoire. The techniques presented here, and demonstrated in real-
world solutions, give you a good taste of the many pieces and parts that go into a
successful Documentum application. You will no doubt find–as I have–these
solutions are implemented in nearly every application you build.

Chapter 6 – Working with Screen Controls

246

6
6 Working With Screen

Controls
A key component of any application is its user interface, or UI, and key
components of the UI are screen controls (e.g., ListBoxes, ComboBoxes,
TextBoxes). When developing UIs, Documentum developers have two options:
use the Documentum-provided ActiveX screen controls that are Docbase-aware,
or use the Microsoft ActiveX screen controls and write your own Docbase-
awareness into them.

The Documentum screen controls come in two flavors: validation controls, and
Docbase-aware controls. Validation controls are used to validate user input
against constraints in the data dictionary. Docbase-aware controls use the
Docbase as the source for the controls' contents. The validation controls are very
object-specific, where the Docbase-aware controls are more general. Of course,
the basic Microsoft ActiveX controls offer the most flexibility but require the
most work to implement.

Chapter 6 – Working with Screen Controls

247

This chapter will explore both validation controls and Docbase-aware controls by
creating simple forms, which demonstrate the abilities of each type of control.
Following these examples, the chapter demonstrates what is necessary to emulate
certain validation controls and Docbase-aware controls using Microsoft ActiveX
controls. The chapter concludes with a mini-project that builds a new Docbase-
aware control from a mixture of Docbase-aware and Microsoft ActiveX controls.
This control can be used in other projects, and in fact is used in the sample
application discussed in Chapter 8, Putting It All Together in a Sample
Application.

6.1 Documentum Validation Controls
Documentum validation controls are ActiveX controls that can display,
manipulate, and save object attributes. These controls use the data dictionary to
validate their contents and are bound to an object's attributes with little effort on
your part. Although these controls are called validation controls, validation
doesn't happen automatically, it requires you to explicitly call the object's
validation routines. Even so, there are advantages to using these controls:

• They automatically retrieve value assistance values from the data
dictionary to populate control options.

• Saving a control's value to its corresponding attribute is accomplished
with one method call: SaveValue().

However, these controls suffer from two problems:

• They are not complete extensions of their Microsoft ActiveX counterparts
so not all of the controls' properties, methods, and event handlers are
available.

• They are mostly undocumented.

Documentum's validation controls come in six types. Table 6.1 contains a
summary of each control. The example later in this chapter will demonstrate
each.

Chapter 6 – Working with Screen Controls

248

Table 6.1 – Documentum Validation Controls

Control Name Description
DfwAttributeLabel Displays text that a user cannot change directly.
DfwCheckBox Displays a CheckBox for the input of true/false

or yes/no values.
DfwComboBox Displays a ComboBox for the selection or input

of values.
DfwListBox Displays a list of values from which one or more

can be selected.
DfwRepeating Displays a control comprised of a ListBox and a

ComboBox for the selection or input of values to
a repeating attribute.

DfwTextBox Displays a TextBox for input of string values.

The key to making these controls work is the Documentum Validation Event
Dispatcher (DfwEventDispatcher) control. This control is invisible to the user,
but must be on each form using validation controls. The event dispatcher
automatically updates validation control selections from the data dictionary. It
also manages controls that contain attributes linked through conditional value
assistance.

Conditional value assistance is a construct implemented through the Documentum
Application Builder, which allows the content of one attribute to affect the
content of another. For example, one attribute, named state, might contain the
names of the 50 Unites States. Another attribute, named county, might contain
the names of all the counties in each state. Conditional value assistance allows
the developer to stipulate that when a state name is chosen in the state attribute,
the control containing the county attribute is updated to display only county
names for the selected state. Conditional value assistance allows you to link
controls and attributes together.

6.1.1 Referencing Validation Controls In Your Visual Basic
Project

To use validation controls in your project, you must add three component libraries
and one reference to your Visual Basic project. Choose Components from the

Chapter 6 – Working with Screen Controls

249

Project menu in Visual Basic and add the following component libraries to your
project:

• Documentum Validation Widgets,
• Documentum Validation Event Dispatcher,
• Documentum Repeating Attribute Validation Control.

You will also need to add a reference to Documentum Widget Logic. Choose
References from the Project menu in Visual Basic and add:

• Documentum Widget Logic.

6.1.2 Example Of Documentum Validation Controls

The following example uses an object type named regional_doc. This
document type is a custom type designed to demonstrate Documentum's
validation controls. regional_doc is a subtype of dm_document and has
two unique attributes: region and us_state as described in Table 6.2. To
implement this example, you will need to create the regional_doc object type
using the Documentum Application Builder, and then instantiate a few of them in
your Docbase.

Source Code This object type is implemented in a DocApp found in the
"Chapter6/regional_doc DocApp" directory of the source code archive.

Table 6.2 - regional_doc Attribute Definitions

Attribute Data Type and Size Value Assistance
region STRING(32) North East,

Mid-Atlantic,
South East

us_state STRING(32) Maine,
New Hampshire,
Maryland,
Virginia,
Georgia,
Florida

Chapter 6 – Working with Screen Controls

250

The value assistance for each attribute is a simple fixed list. However,
us_state is linked to region by a conditional value assistance clause. The
pseudo code for that clause is:

if region = "North East" then
 us_state = "Maine, New Hampshire"
else if region = "Mid-Atlantic" then
 us_state = "Maryland, Virginia"
else if region = "South East" then
 us_state = "Georgia, Florida"
else
 us_state = "None"

The Documentum Application Builder provides a UI to help you enter value
assistance clauses such as this one.

The effect of the conditional value assistance clause is that when the region
attribute is set to "North East", the only available values for us_state are
"Maine" and "New Hampshire". Similarly, when region is "Mid-Atlantic", the
only values available to us_state are "Maryland" and "Virginia". When
region is "South East", us_state is "Georgia" and "Florida". However, if
any other value than "North East", "Mid-Atlantic", or "South East" is chosen for
region, the only value available for the us_state attribute is "None".

Conditional value assistance can greatly reduce data entry errors, and is a great
benefit if used properly. Though this example is simple, value assistance can be
quite complicated and utilize parameterized queries to provide and validate
control data. For more information on conditional value assistance, see the
Documentum Developer website.

In this example, I create a simple form that contains one instance of each of the
six validation controls, plus the Event Dispatcher (see Figure 6.1). For simplicity,
I use the default name for each control as described in Table 6.3.

When the form loads, each control is initialized with a reference to an
IDfSysObject. The control automatically displays the value of the
IDfSysObject’s attribute associated with it. Clicking the Save Attributes button
saves the value of each control back to the Docbase.

Chapter 6 – Working with Screen Controls

251

Figure 6.1 - Designer View of Validation Controls Plus the Event Dispatcher

Table 6.3 - Form Controls

Control Name Control Type Control Purpose
DfwComboBox1 DfwComboBox This control is initialized

with the region
attribute.

DfwTextBox1 DfwTextBox This control is initialized
with the us_state
attribute.

DfwRepeating1 DfwRepeating This control is initialized
with the
r_version_label
attribute that
regional_doc inherits
from dm_document.

Command1 CommandButton The Save Attributes
button will save all the
values selected in the
controls.

DfwEventdispatcher1 DfwEventDispatcher This is the invisible, yet
very important, event
dispatcher control.

Chapter 6 – Working with Screen Controls

252

Control Name Control Type Control Purpose
DfwCheckBox1 DfwCheckBox This control is initialized

with the Boolean value of
the a_full_text
attribute.

DfwAttributeLabel1 DfwAttributeLabel This control is initialized
with the
r_object_type
attribute.

DfwListBox1 DfwListBox This control is initialized
with the us_state
attribute.

To fully appreciate validation controls, study the code behind this form. For
simplicity, this code assumes an object with Id of 0900218d8006124b, and
that a login has occurred elsewhere in the application.

Source Code A working example of this source code can be found in the
"Chapter6/Validation Ctrls" directory of the source code archive.

'Validation Controls Form
Public sessionId as String ' passed in

Private Sub Form_Load()
 Dim sobj As IDfSysObject

 ' set up dfc client vars
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionId)

 ' get a regional_doc
 Set sobj = session.GetObject(cx.getId("0900218d8006124b"))

 ' combo box of region values
 Me.DfwComboBox1.initWithObj session, DfwEventDispatcher1, _
 sobj, "region"
 Me.DfwComboBox1.ValidateOnLostFocus = True
 Me.DfwComboBox1.Refresh

 ' text box with us_state value
 Me.DfwTextBox1.initWithObj session, DfwEventDispatcher1, _

Chapter 6 – Working with Screen Controls

253

 sobj, "us_state"
 Me.DfwTextBox1.ValidateOnLostFocus = True
 Me.DfwTextBox1.Refresh

 ' repeating attribute of version labels
 Me.DfwRepeating1.initWithObj session, DfwEventDispatcher1, _
 sobj, "r_version_label"
 Me.DfwRepeating1.ValidateOnLostFocus = True

 ' checkbox on full-text flag
 Me.DfwCheckBox1.initWithObj session, DfwEventDispatcher1, _
 sobj, "a_full_text"
 Me.DfwCheckBox1.ValidateOnLostFocus = True
 Me.DfwCheckBox1.Refresh

 ' label for object type
 Me.DfwAttributeLabel1.initWithObj session, sobj, _
 "r_object_type"
 Me.DfwAttributeLabel1.Caption = Me.DfwAttributeLabel1. _
 TypeName
 Me.DfwAttributeLabel1.Refresh

 ' list of all us_states
 Me.DfwListBox1.initWithObj session, DfwEventDispatcher1, _
 sobj, "us_state"
 Me.DfwListBox1.ValidateOnLostFocus = True
 Me.DfwListBox1.Refresh
End Sub

Private Sub Command1_Click()
 ' save all attribute values
 Me.DfwComboBox1.SaveValue True
 Me.DfwTextBox1.SaveValue True
 Me.DfwRepeating1.SaveValue True
 Me.DfwCheckBox1.SaveValue True
 Me.DfwListBox1.SaveValue True
 MsgBox "Saved"
End Sub

This form contains two simple subroutines. The Form_Load() subroutine runs
when the form is loaded and establishes the local DFC client objects for the form,
retrieves the regional_doc object, and initializes the validation controls.
After initialization, the ValidateOnLostFocus property of each control
(except DfwAttributeLabel) is set to true, and the Refresh() method is

Chapter 6 – Working with Screen Controls

254

called. Setting the ValidateOnLostFocus property to true forces the
Event Dispatcher to validate the control's contents against the data dictionary
when the control losses focus. The call to Refresh() is necessary to update the
screen with the contents of the newly initialized control.

The Command1_Click() subroutine responds to a click of the Save
Attributes button and calls the SaveValue() method on all the controls, except
the DfwAttributeLabel control, which doesn't have one. SaveValue() causes
each control to save its currently selected values to the Docbase.

Experiment with this form. Notice as the value in the DfwComboBox
ComboBox changes, the values displayed in the DfwListBox ListBox change (see
Figure 6.2). This change is in accordance with the conditional value assistance
established for the attributes in the Documentum Application Builder. The value
displayed in the DfwTextBox TextBox is the current value of the us_state
attribute. If you select a different value from the DfwListBox ListBox and click
Save Attributes, this value will change.

Figure 6.2 - Form of Validation Controls

Note that client-side caching can defeat the use of conditional value assistance.
You may need to clear the client-side caches before using the code in this section.
For information on how to clear client-side caches, see Chapter 7, Tips, Tools and
Handy Information.

Chapter 6 – Working with Screen Controls

255

You can see the advantages of using validation controls in this example. I didn't
write the code to find and retrieve the value assistance values from the data
dictionary, or the code to populate the control. Nor did I write the code to retrieve
the value for each attribute and automatically select that value in the control. All
of this work is automatically performed when the controls are initialized and
refreshed. The elegance of this solution will become more apparent in the
following sections when you see how to build this functionality using Microsoft
ActiveX controls.

6.2 Docbase-Aware Controls
In addition to validation controls, Documentum provides screen controls that are
Docbase-aware. These controls look and behave (mostly) like their Microsoft
ActiveX counterparts, but are aware of Docbase objects, values, and events. For
the most part, these controls are pre-configured to perform certain common tasks
for you, such as: listing users in the Docbase; listing object types in the Docbase;
listing format types defined in the Docbase; etc. Docbase-aware controls
generally come with two faces: ListBox and ComboBox. In addition, there are a
few Docbase-aware controls that encapsulate advanced operations, such as:
browsing the Docbase, importing objects into the Docbase, and opening objects in
the Docbase. Table 6.4 summarizes the Docbase-aware controls.

Table 6.4 - Docbase-Aware Controls

Control Name Description
DfwAttrCombo Displays the names of attributes for an object

type in a ComboBox. You can specify
which attribute to display as default at
design-time or run-time.

DfwAttrList Displays the names of attributes for an object
type in a ListBox. You can specify which
attribute to display as default at design-time
or run-time.

DfwAvailableDocbasesCombo Displays the names of the Docbases the user
can connect to using the current DocBroker
in a ComboBox.

DfwConnectedDocbasesCombo Displays the names of the Docbases to which
the user is connected in a ComboBox.

Chapter 6 – Working with Screen Controls

256

Control Name Description
DfwFormatsCombo Displays the document formats available in

the current Docbase in a ComboBox.
DfwFormatsList Displays the document formats available in

the current Docbase in a ListBox.
DfwGroupsCombo Displays the names of all the groups defined

in the Docbase in a ComboBox.
DfwGroupsList Displays the names of all the groups defined

in the Docbase in a ListBox.
DfwOperatorCombo Displays the names of relational operators

that are applicable to an attribute in a
ComboBox. These operators are obtained
from the data dictionary.

DfwOTCombo Displays the names of the object types
defined in a Docbase in a ComboBox.

DfwOTList Displays the names of the object types
defined in a Docbase in a ListBox.

DfwUsersCombo Displays the names of all the users defined in
the Docbase in a ComboBox.

DfwUsersList Displays the names of all the users defined in
the Docbase in a ListBox.

BrowserControl Allows you to navigate a Docbase using a
tree view similar to that used by the
Documentum Desktop. Double clicking a
document object will initiate a checkout.
This control does not have any public
methods.

Import Tree Allows you to import documents and folders
into the Docbase.

OpenDialog Provides an open/save dialog that allows you
to navigate the Docbase to open/save objects.

QueryListCombo Displays the results of a query in a
ComboBox. You can specify the query at
design-time or run-time.

QueryListList Displays the results of a query in a ListBox.
You can specify the query at design-time or
run-time.

Chapter 6 – Working with Screen Controls

257

You can see these specialized controls at work in many of Documentum's
components. For example, the Login Manager uses the
DfwAvailableDocbasesCombo control to list available Docbases, and the
Properties component uses the DfwCheckbox, DfwRepeating, and DfwTextbox
controls to display object attributes.

6.2.1 Referencing Docbase-Aware Controls In Your Visual
Basic Project

To use Docbase-aware controls, you must add three component libraries to your
Visual Basic project. Choose Components from the Project menu in Visual
Basic, and add the following component libraries to your project:

• Documentum Docbase Browser Control,
• Documentum Docbase-Aware Controls,
• Documentum Open Dialog Control.

6.2.2 Example Of Docbase-Aware Controls

In this example, I create a simple form which contains one instance of four
Docbase-aware controls: DfwUserList, QueryListList, Docbase Browser, and
Open Dialog (see Figure 6.3). This example also makes use of the
regional_doc object type introduced in the previous section, Section 6.1.2,
Example of Documentum Validation Controls.

For simplicity, I use the default name for each control as described in the Table
6.5. The only control that has a special property set is the QueryListList1
control. Its query property contains the DQL string:

select r_object_id from dm_document where folder('/Temp').

Chapter 6 – Working with Screen Controls

258

Figure 6.3 - Designer View Of Form With Docbase-Aware Controls

Table 6.5 - Form Controls

Control Name Control Type Control Purpose
DfwUsersCombo1 DfwUsersCombo This control is initialized with the

names of all the users in the
Docbase.

QueryListList1 QueryListList This control is initialized with the
results of the query contained in its
query property.

Command2 CommandButton The Change Query button
toggles the query property of the
QueryListList1 control between
two predefined queries.

OpenDialog1 OpenDialog This is the Documentum Open
Dialog control. It is a hidden
control.

BrowserControl1 BrowserControl This control is initialized to
contain the list of Docbases
available to the DocBroker. The
Docbases are displayed in a tree
view.

Chapter 6 – Working with Screen Controls

259

Control Name Control Type Control Purpose
DfwTextBox1 DfwTextBox This control receives the name and

path of the object returned by the
Documentum Open Dialog
control.

Command1 CommandButton The Browse button launches the
Documentum Open Dialog
control.

As with the validation controls discussed earlier, these controls perform a large
amount of work just by initializing them. Once the form is initialized, clicking
the Change Query button toggles the query property of the
QueryListList1 control between two pre-defined queries, and refreshes its
display. Clicking the Browse button opens the Documentum Open Dialog. The
name of the object selected in the Documentum Open Dialog is transferred to the
DfwTextBox adjacent to the Browse button, when the Open Dialog is closed.

For the amount of functionality demonstrated on this form, there is very little
code. The Form_Load() subroutine runs when the form is loaded and
establishes the local DFC client objects for the form, and initializes the Docbase-
aware controls. Notice there are no object-specific initializations needed for these
controls. In fact, there is no reference to any specific object in the code. These
controls are initialized by sending them a session object, and calling their
Refresh() methods.

Source Code A working example of this source code can be found in the
"Chapter6/Docbase-aware Ctrls" directory of the source code archive.

' Docbase-aware control form

Public sessionId as String ' passed in

Private Sub Form_Load()

 ' set up dfc client vars
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionId)

 ' init user listbox

Chapter 6 – Working with Screen Controls

260

 Me.DfwUsersCombo1.setSession session
 Me.DfwUsersCombo1.Refresh

 ' init query listbox
 Me.QueryListList1.setSession session
 Me.QueryListList1.Refresh

 ' hide open dialog control
 Me.OpenDialog1.Visible = False
End Sub

The Command2_Click() subroutine responds to a click of the Query button
by changing the query string assigned to the query property of the
QueryListList1 control, and refreshing the control's display.

Private Sub Command2_Click()
 ' toggle query for query listbox
 If (Me.QueryListList1.query = "select r_object_id from " _
 & "dm_document where folder('/Temp')") Then

 Me.QueryListList1.query = "select object_name from " _
 & "dm_document where folder('/Temp')"
 Else
 Me.QueryListList1.query = "select r_object_id from " _
 & " dm_document where folder('/Temp')"
 End If
 Me.QueryListList1.Refresh
End Sub

The Command1_Click() subroutine responds to a click of the Browse button.
It creates, configures, and displays the Documentum Open Dialog control. The
Documentum Open Dialog is an interesting control and is discussed in more detail
in Section 6.2.3, The Documentum Open Dialog. You can get the general idea of
how the Documentum Open Dialog control works by reading through the
following code snippet.

Private Sub Command1_Click()
 ' create, config, display dctm open dialog
 With Me.OpenDialog1
 .CreateOpenDialog
 .ChgTitle "Documentum Open Dialog Example"
 .SetActionButtonCaption "Open"
 .VersioinComboEnable True ' note misspelling!
 .DefaultTypeFilter = 0

Chapter 6 – Working with Screen Controls

261

 .ShowDetail

 .CreateNewFilter (0)
 .TypeName(0) = "regional_doc"
 .TypeDisplayName(0) = "Regional Doc"
 .SingleSelectionOnly(0) = True
 .IsSysObject(0) = True
 .AddColumn 0, "Name", "object_name"
 .AddColumn 0, "Type", "r_object_type"
 .AddColumn 0, "Version", "r_version_label"

 .CreateNewFilter (1)
 .TypeName(1) = "dm_document"
 .TypeDisplayName(1) = "Document"
 .SingleSelectionOnly(1) = False
 .IsSysObject(1) = True
 .AddColumn 1, "Name", "object_name"
 .AddColumn 1, "Type", "r_object_type"
 .AddColumn 1, "Size", "r_content_size"

 .Path = "/Temp"
 .ChgSession session.getSessionId
 .DoModal
 End With

 ' get selected object name in textbox
 If (Me.OpenDialog1.HasSelectedObject = True) Then
 Me.DfwTextBox1.Text =
 Me.OpenDialog1.GetSelectedObjName(0)
 Else
 MsgBox "No selected objects"
 End If
End Sub

Figure 6.4 shows that just by instantiating the form, the controls are populated
with data from the Docbase.

The advantage of using these controls should be evident: a large amount of
functionality with little code. However, some of these controls' shortcomings
should also begin to be evident. What happens if you double-click on an object in
the Docbase Browser? What if you want to change this behavior? What if you
want to display a two-column result in the QueryListList control? What if you
want to trap an ActiveX event in the control? What if you want to change the
control's appearance? The incomplete implementation of these controls makes

Chapter 6 – Working with Screen Controls

262

these ideas impossible. Solutions for some of these problems are addressed in the
Section 6.3, Visual Basic Controls.

Figure 6.4 - Form of Docbase-aware Controls

6.2.3 The Documentum Open Dialog

The Documentum Open Dialog control provides access to the Docbase for object
selection. It looks like a standard Microsoft open dialog, but targets the Docbase
instead of the file system. It is a very useful control, but largely undocumented. I
am not going to discuss or try to document all of the Documentum Open Dialog's
methods and properties here, but I will familiarize you with the more common
ones. This discussion references the code in the Command1_Click()
subroutine from the previous example. It is reproduced here for context. The
Documentum Open Dialog resulting from this code is shown in Figure 6.5.

Chapter 6 – Working with Screen Controls

263

Figure 6.5 - Documentum Open Dialog

You create a new instance of the Documentum Open Dialog with a call to the
CreateOpenDialog() method. This method is the constructor for the control
and creates a new instance of the control. However, the control is not yet visible
to the user.

 With Me.OpenDialog1
 .CreateOpenDialog
 .ChgTitle "Documentum Open Dialog Example"
 .SetActionButtonCaption "Open"
 .VersioinComboEnable True ' note misspelling!
 .DefaultTypeFilter = 0
 .ShowDetail

Most of the customization of this control is done through the definition of filters
for particular object types. The Documentum Open Dialog contains an array of
filters but when you create a new filter, instead of returning a filter object for you
to manipulate, it simply adds it to the array. As you see in the sample code, this
requires that you use awkward syntax to address filter objects. Essentially, you
have to indicate which filter object's methods or properties you are manipulating
by passing the filter’s array index.

 .CreateNewFilter (0)
 .TypeName(0) = "regional_doc"
 .TypeDisplayName(0) = "Regional Doc"
 .SingleSelectionOnly(0) = True

Chapter 6 – Working with Screen Controls

264

 .IsSysObject(0) = True
 .AddColumn 0, "Name", "object_name"
 .AddColumn 0, "Type", "r_object_type"
 .AddColumn 0, "Version", "r_version_label"

 .CreateNewFilter (1)
 .TypeName(1) = "dm_document"
 .TypeDisplayName(1) = "Document"
 .SingleSelectionOnly(1) = False
 .IsSysObject(1) = True
 .AddColumn 1, "Name", "object_name"
 .AddColumn 1, "Type", "r_object_type"
 .AddColumn 1, "Size", "r_content_size"

You end your definition of the Documentum Open Dialog with a call to its
DoModal() method, which causes the dialog to display itself.

 .ChgSession session.getSessionId
 .DoModal
 End With

After the dialog is closed, but not destroyed, you can access the control's
properties using one of several GetSelectedXXX() methods where XXX is a
property of the control. Table 6.6 and Table 6.7 describe these methods and
properties.

 If (Me.OpenDialog1.HasSelectedObject = True) Then
 Me.DfwTextBox1.Text =
 Me.OpenDialog1.GetSelectedObjName(0)
 Else
 MsgBox "No selected objects"
 End If

The Documentum Open Dialog is your only option for allowing users to select
objects in the Docbase, unless you want to write your own, which is what I do
later in this chapter. It is undocumented and somewhat non-intuitive to use, but
with a little experimentation and the explanations provided here, you should find
it simple to implement.

Chapter 6 – Working with Screen Controls

265

Table 6.6 - Commonly Used Documentum Open Dialog Methods

Method Description
AddColumn
(index,"header","attribute")

Defines columns for the
detail view. The columns are
added to the display in order
of definition, left to right.
index is the index of the
filter this column applies to;
header is the name that
appears at the top of the
column; and attribute is
the name of the object's
attribute that will be
displayed in the column.

ChgSession("sessionId") Sets the session Id for the
dialog. You must call this
method before calling the
DoModal() method. Note
sessionId is a string and
not an IDfSession object.

ChgTitle("title") Changes the title bar of the
dialog.

CreateNewFilter(index) Creates a new filter for the
dialog contents. index
indicates which filter
position receives the new
filter. An index of 0 always
forces the filter into the first
position and causes the other
filters to shift downward.

CreateOpenDialog() This is the Documentum
Open Dialog constructor and
must be called before any
method or property of the
dialog can be used.

DoModal() Displays the Documentum
Open Dialog in modal mode.

Chapter 6 – Working with Screen Controls

266

Method Description
GetSelectedCount() Returns the number of

objects selected in the dialog.
GetSelectedFilterIndex() Returns the index of the filter

used when the selection of
the object was made.

GetSelectedObjID(index) Returns the r_object_id
of the selected object in a
particular index position.

GetSelectedObjName(index) Returns the object_name
of the selected object in a
particular index position.

GetSelectedObjType(index) Returns the
r_object_type of the
selected object in a particular
index position.

GetSelectedVersionLabelIndex() Returns the index of the
version label filter used when
the selection of objects was
made.

HasSelectedObject() Returns true if an object
was selected in the dialog.
Otherwise, returns false.

SetActionButtonCaption("caption") Sets the caption for the only
action button on the form.

SetSelectedVersionLabel(index) For a filter at a particular
index position, concatenates
the selected object's version
label to its object name in the
dialog's content view.

ShowDetail() Shows the content of the
dialog in detail mode.

ShowList() Shows the content of the
dialog in list mode.

Chapter 6 – Working with Screen Controls

267

Table 6.7 - Commonly Used Documentum Open Dialog Properties

Property Value Description
DefaultTypeFilter index Holds the index of

the default filter as
defined in the Object
Type ComboBox.

IsSysObject true/false Causes the filter to
display cabinets and
folders in addition to
your filtered type. I
recommend that you
always set this
property to true if
you want to allow
users to navigate the
cabinet/folder
structure of your
Docbase. If this
property is set to
false, the parent
folder () and new
folder () buttons
are disabled.

SingleSelectionOnly(index) true/false Controls whether or
not more than one
object can be selected
in the dialog using
the filter at position
index.

TypeDisplayName(index) "name" Defines a natural
language name for
the filter at position
index to be
displayed in the
Object Type
ComboBox.

Chapter 6 – Working with Screen Controls

268

Property Value Description
TypeName(index) "type" Defines a Docbase

object type for the
filter at position
index.

VersioinComboEnabled true/false Note misspelling of
property name!
Controls whether the
Version ComboBox
on the Documentum
Open Dialog is
enabled.

6.3 Visual Basic Controls
Up until now, this chapter has discussed two types of Documentum-supplied
screen controls: validation controls, and Docbase-aware controls. Each of these
types of controls offers certain capabilities and features out of the box, but each
also suffers from some deficiencies in event handling, properties, and flexibility.
In this section, I demonstrate how to make Microsoft Visual Basic ActiveX
controls behave like Documentum validation and Docbase-aware controls,
including how to utilize value assistance and link the controls together to emulate
the functionality of the DfwEventDispatcher. In general, this approach requires
more work, but can provide better results depending your needs. The following
section discusses three basic Microsoft ActiveX control types: ComboBoxes,
ListBoxes, and TreeView controls. It will show you how to transform these
ordinary controls into controls with Docbase awareness. During the process, I'm
sure you will gain a greater appreciation for the validation and Docbase-aware
controls provided by Documentum.

6.3.1 Referencing Microsoft Controls In Your Project

By default, most of the common Microsoft ActiveX controls are probably already
part of your Visual Basic project. However, the TreeView control and its
accompanying ImageList are contained in an auxiliary component library. To add

Chapter 6 – Working with Screen Controls

269

this library to your project, choose Components from the Project menu in
Visual Basic, and add the following component library to your project:

• Microsoft Windows Common Controls.

6.3.2 Example Of Emulating Validation And Docbase-Aware
Controls

In this example, I create a form with two ComboBoxes, two TextBoxes, a
ListBox, a TreeView, and two buttons (see Figure 6.6). This example also makes
use of the regional_doc object type developed in Section 6.1.2, Example of
Documentum Validation Controls.

For simplicity, I use the default name for each control as described in Table 6.8.

Figure 6.6 - Designer View Of Form With Microsoft Visual Basic Controls

Chapter 6 – Working with Screen Controls

270

Table 6.8 - Form Controls

Control Name Control Type Control Purpose
Combo2 ComboBox The Region ComboBox emulates the

functionality of the DfwComboBox
by presenting the value assistance
values defined for the region
attribute.

List1 ListBox The Available States ListBox
emulates the functionality of the
DfwListBox by evaluating the
conditional value assistance for the
us_state attribute, and presenting
the resulting values.

Text1 TextBox The State TextBox emulates the
functionality of the DfwTextBox by
displaying (in read-only format) the
value of the object's us_state
attribute. The TextBox is not tied to
the value assistance for the attribute;
it simply shows the value of the
attribute.

Combo1 ComboBox The Users ComboBox emulates the
functionality of the DfwUserCombo,
which is to list all of the users defined
in the Docbase.

TreeView1 TreeView The Docbase Browser TreeView
approximates the Docbase Browser
control. However, unlike the Docbase
Browser control, the TreeView allows
you to capture the Click() event
and process it. Remember, with the
Docbase Browser control, a click on a
document object caused it to open.

Text2 TextBox The Selected TextBox control
simply displays the name of the
document selected in the TreeView
control.

Chapter 6 – Working with Screen Controls

271

Control Name Control Type Control Purpose
Command1 CommandButton The Save Attributes button saves the

attributes selected in each control to
the Docbase. This button emulates
the SaveValue() method of the
validation controls.

Command2 CommandButton The Change Query button changes
the query used by the Combo1
(Users) control. It emulates the
query property of the
QueryListCombo Docbase-aware
control.

I won't spend a lot of time discussing the ActiveX controls–I assume you know
how to use them or can read a book about them. Rather, I will concentrate on
how to make them Documentum-aware.

This example is discussed in two parts. The first part concentrates on everything
except the TreeView control. The second part concentrates on just the TreeView
control. I split this example because the TreeView control requires four separate
subroutines to implement it, and I didn't want it to distract you from the other
controls. The other controls' implementations are shorter and easier to discuss as
a whole.

To begin, examine the Form_Load() subroutine. It establishes the local DFC
client objects and retrieves a regional_doc from the Docbase. The object Id
for this regional_doc is 0900218d80069fc1. After getting the
regional_doc object, the form's controls are initialized by calling four
subroutines: loadtxtStates(), loadcbxUsers(),
loadcbxRegions() and loadTreeView(). These initialization
subroutines are analogous to the initWithObject() methods on the
Documentum validation controls and the setSession() and Refresh()
methods on the Docbase-aware controls, though not as elegant. It is in these
subroutines where you will gain an understanding of how the validation and
Docbase-aware controls work, and what they are doing.

Chapter 6 – Working with Screen Controls

272

Source Code A working example of this source code can be found in the "Chapter6/VB
Controls" directory of the source code archive.

Public sessionId As String ' passed in

Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession
Private sObj As IDfSysObject

Private Sub Form_Load()

 ' set up dfc client vars
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionId)

 ' get a region_doc
 Set sobj = session.GetObject(cx.getId("0900218d80069fc1"))

 ' load state textbox
 Call loadtxtState

 ' load user combo
 Call loadcbxUsers("select user_name from dm_user order " _
 & "by user_name")

 ' load regions combo
 Call loadcbxRegions

 ' init tree view
 Call loadTreeView

End Sub

6.3.2.1 State TextBox

The shortest and easiest to understand of the initialization subroutines, is
loadtxtStates(), which simply copies the value of the us_state attribute
from the regional_doc, to the Text property of the Text1 TextBox (State).

Private Sub loadtxtState()

 Me.Text1.Text = sObj.getString("us_state")

Chapter 6 – Working with Screen Controls

273

 Me.Text1.Enabled = False

End Sub

6.3.2.2 Users ComboBox

The next subroutine is loadcbxUsers(), which loads the ComboBox1
ComboBox (Users) with a list of all users in the system. This subroutine is also
straightforward and implements the query and collection processing technique
discussed in Chapter 3, Working with Queries and Collections. The difference
here is that within the while loop, the collection contents are added to the
Combo1 ComboBox (Users).

Private Sub loadcbxUsers(query As String)
 Dim q As IDfQuery
 Dim col As IDfCollection

 ' clear current contents
 Me.Combo1.Clear

 ' query docbase
 Set q = cx.getQuery
 q.setDQL (query)
 Set col = q.execute(session, DF_READ_QUERY)

 ' set label
 Me.Label6.Caption = col.GetAttr(0).getName

 ' load combobox control
 While (col.Next)
 Me.Combo1.AddItem col.getString(col.GetAttr(0).getName)
 Wend
 col.Close

 ' select first combobox list element
 Me.Combo1.ListIndex = 0

End Sub

This control is actually emulating two controls. While it is true that the Combo1
ComboBox displays the names of the users of the Docbase, it is only because that
is what the query passed into it returns. In that respect, this control also functions
similarly to the QueryListCombo (or QueryListList) Docbase-aware control

Chapter 6 – Working with Screen Controls

274

where the query string that populates the control is set as a property of the object.
This allows the content of the control to be changed dynamically (e.g., when the
Change Query button is clicked). Note that like the QueryListCombo Docbase-
aware control, only the first attribute in the SELECT list is inserted into the
ComboBox.

6.3.2.3 Region ComboBox

The loadcbxRegions() loads the Combo2 ComboBox (Region) and is the
first control that deals with value assistance. To emulate the functionality of a
DfwComboBox control, this subroutine loads the Combo2 ComboBox with the
values listed in the regional_doc's value assistance for the region attribute.

To get these values, the code obtains an IDfValidator object from the
regional_doc's IDfSysObject. From that object, it gets an
IDfValueAssistance object. Then it tells the IDfValidator to fetch the
IDfValueAsssistance object, indicates the attribute for value assistance, and
passes Nothing for the second argument. The Nothing argument tells
IDfValueAssistance that this attribute does not have any conditional value
assistance. Once an instance of IDfValueAssistance is obtained, the code uses the
getActualValues() method to retrieve the list of values for the region
attribute.

Private Sub loadcbxRegions()
 Dim validator As IDfValidator
 Dim valAssist As IDfValueAssistance
 Dim regionList As IDfList
 Dim i As Integer
 Dim default As String

 ' get current value
 default = sobj.getString("region")

 ' get list of values from value assistance object
 Set validator = sobj.getValidator
 Set valAssist = validator.getValueAssistance _
 ("region", Nothing)
 Set regionList = valAssist.getActualValues

 ' load combobox control
 For i = 0 To regionList.getCount - 1

Chapter 6 – Working with Screen Controls

275

 Me.Combo2.AddItem regionList.getString(i)

 ' set combobox default to current attr value
 If (default = regionList.getString(i)) Then
 Me.Combo2.ListIndex = i
 End If
 Next i
End Sub

Instead of iterating over a collection like in the loadcbxUsers() subroutine,
this subroutine iterates over a list to populate the ComboBox. Notice on each
iteration it checks if the current list value is equal to the attribute's current value.
If it is, it is set as the default value for the ComboBox.

To emulate conditional value assistance, we need to link two controls such that
one control's content relies on the value selected in the other. This is the
functionality provided by the DfwEventDispatcher when used with Documentum
validation controls. To emulate this, we establish a link between the List1
ListBox (Available States) and the Combo2 ComboBox (Region) by capturing
and processing the Click event on the Combo2 ComboBox, and using its
content to affect the values in the List1 ListBox. When the Combo2
ComboBox is clicked, the Combo2_Click() subroutine determines the
conditional value assistance for the us_state attribute and populates the
List1 ListBox. The Combo2_Click() subroutine utilizes IDfValidator and
IDfValueAssistance objects to access the value assistance data in the data
dictionary.

Private Sub Combo2_Click() ' region combobox
 Dim validator As IDfValidator
 Dim valAssist As IDfValueAssistance
 Dim prop As IDfProperties
 Dim list As IDfList
 Dim i As Integer
 Dim stateList As IDfList

 ' clear the state list
 Me.List1.Clear

 ' get list of values from value assistance object
 Set validator = sobj.getValidator

 ' get the property that us_state depends on (i.e., region)

Chapter 6 – Working with Screen Controls

276

 Set prop = validator.getValueAssistanceDependencies _
 ("us_state")

 ' create a list of values to add to the property obj
 Set list = cx.getList
 list.setElementType DF_STRING
 list.appendString Me.Combo2.Text

 ' add list of values to propery obj
 prop.putList "region", list

After instantiating an IDfValidator object, the
getValueAssistanceDependencies() method retrieves the name of the
attribute the conditional value assistance for us_state depends upon. This
information is returned as an IDfProperties object. In this case, the IDfProperties
object only contains one property name, region, with no value. The value for
region is obtained from the Combo2 ComboBox (Region) and added to the
IDfProperties object as an IDfList of string values. Using an IDfList of strings to
set this value is not intuitive, unless you consider that conditional value assistance
could depend upon multiple attributes with multiple values. It seems a little odd
in this example because the conditional value assistance only depends upon one
attribute.

After the IDfProperties object is properly populated, a call to IDfValidator's
getValueAssistance() method evaluates the conditional value assistance,
and returns an IDfValueAssistance object for the us_state attribute.

 ' evaluate value assistance for us_state using current
 ' setting of region
 Set valAssist = validator.getValueAssistance _
 ("us_state", prop)
 Set stateList = valAssist.getActualValues

 ' update display
 If (Not stateList Is Nothing) Then
 For i = 0 To stateList.getCount - 1
 Me.List1.AddItem stateList.getString(i)
 Next i
 End If
End Sub

Chapter 6 – Working with Screen Controls

277

Notice this time when the getValueAssistance() method is called, we pass
the attribute name, us_state, and the IDfProperties object containing the value
of region. The IDfProperties object contains the critical information that makes
the conditional value assistance work. A call to getActualValues() returns
the list of available states for the region selected, and the remainder of the
code loads these values into the List1 ListBox control.

6.3.2.4 Command Buttons

The final snippet of code implements the buttons' actions. The Save Attributes
button saves the region and us_state values selected in the controls to the
Docbase. The Change Query button changes the query attached to the Combo1
ComboBox (User). Saving attribute values with these controls is not as elegant
as with the Documentum validation controls. You have to actually set the
attribute values and save the IDfSysObject. Changing the query attached to the
Combo1 ComboBox control is almost as easy in this implementation as with the
Documentum validation controls, but only because of the way
loadcbxUsers() was implemented.

Private Sub Command1_Click() ' save
 ' save region and us_state attributes
 sobj.setString "region", Me.Combo2.Text
 sobj.setString "us_state", Me.List1.Text
 sobj.save

 MsgBox "Saved"
End Sub

Private Sub Command2_Click() ' change query
 Call loadcbxUsers("select r_object_id from dm_document " _
 & "where folder('/Temp')")
End Sub

Figure 6.7 shows an example of the form when it runs.

One last note about this code: when I set the default selection for the Combo1
ComboBox (Region) in the loadcbxRegions() subroutine, that action fired

Chapter 6 – Working with Screen Controls

278

a Click event making the value assistance code run. Therefore, when the form
loads, the controls are already in sync.

Figure 6.7 – Form Of Visual Basic Controls Emulating Validation And Docbase-Aware Controls

6.3.2.5 Docbase Browser TreeView

Now that you have seen how to emulate validation controls and Docbase-aware
controls with Microsoft ActiveX controls, I will show you how to create a
Docbase Browser control, which provides more utility than its Docbase-aware
counterpart. Remember, the problems with the Documentum Docbase Browser
control were it had no public methods, and it didn't allow you to trap the Click
event. When an object was clicked in the Documentum Docbase Browser control,
it was automatically opened, and this was not always the desired result.

This Docbase Browser control is implemented using an ActiveX TreeView
control. There are four, interactive subroutines required to implement the
Docbase Browser control:

• loadTreeView–subroutine initializes the control and loads it with
default content.

• TreeView1_Expand–event handler to expand a closed folder and show
its contents.

Chapter 6 – Working with Screen Controls

279

• TreeView1_Collapse–event handler to collapse an open folder, thus
hiding its contents.

• TreeView1_Click–event handler for the Click event when a
document is selected in the control.

I listed these subroutines before starting the discussion to give you an idea how
the control works. I am not going to explain the details of each subroutine as they
relate to the TreeView control itself–any good Visual Basic book can teach you
that–but rather, how and where to hook Documentum into the code to allow
browsing of the Docbase.

Another bit of information I should give you before I start, is the configuration of
the ImageList control associated with this TreeView control. The icons displayed
in the TreeView control for each node (folder) are stored in an ImageList control.
The ImageList is associated with the TreeView control through its properties
page. Again, any Visual Basic book will explain how this works. The
information I want to give you is where to find the icons to load the ImageList.
The Documentum icons are found in the Images directory of the Documentum
Desktop Component Source code archive*. You will find a variety of icons in the
Images directory, including the three used here. The ImageList control for this
example is shown in Figure 6.8.

Figure 6.8 - Properties Page For The ImageList Used By The Docbase Browser TreeView

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 6 – Working with Screen Controls

280

Table 6.9 describes the images contained in the ImageList.

Table 6.9 - ImageList Icon Enumeration

Index Key Image File Name
1 document document.ico
2 closed FolderClosed.ico
3 open FolderOpen.ico

6.3.2.5.1 Load The TreeView

To use the Docbase Browser control, it must be initialized and loaded. This is
accomplished when the Form_Load() subroutine calls loadTreeView()
(see the code listing in Section 6.3.2, Example of Emulating Validation And
Docbase-Aware Controls).

The loadTreeView() subroutine begins by querying the Docbase for all of its
cabinets. The cabinets represent the root nodes in the tree. The subroutine
iterates over the collection returned by the query and inserts each cabinet as a
node at the root level of the tree. The cabinet's r_object_id is saved as the
node's Key property, and the cabinet's object_name is saved as the node's
Text property. Additionally, I use the node's Tag property to store the object's
type, in this case dm_cabinet. This paradigm is followed throughout the
TreeView code, and as you will see, turns out to be a handy technique.

Private Sub loadTreeView()
 Dim docbaseNode As Node
 Dim q As IDfQuery
 Dim col As IDfCollection

 ' don't allow changes to root name
 Me.TreeView1.LabelEdit = False

 ' get info from Docbase for root
 Set q = cx.getQuery
 q.setDQL ("select r_object_id,object_name from dm_cabinet " _
 & "order by object_name")
 Set col = q.execute(session, DF_READ_QUERY)
 While (col.Next = True)

Chapter 6 – Working with Screen Controls

281

 ' build root cabinets
 Set docbaseNode = Me.TreeView1.Nodes.Add _
 (, , col.getString("r_object_id"), _
 col.getString("object_name"), "closed")

 docbaseNode.Tag = "dm_cabinet"

 ' this gives every node an empty child so that it gets
 ' the '+' icon in the tree view. Expanding this node must
 ' remove this node!

 Set docbaseNode = Me.TreeView1.Nodes.Add _
 (docbaseNode.Index, tvwChild, , "***", "closed")

 Wend
 col.Close
End Sub

As each cabinet (root node) is inserted into the tree, they are given dummy child
nodes. You will notice their names are "***" and they do not have a unique Key
property. These children are added to force the cabinets to display the "+" sign
and allow them to be expanded. You will see later where these dummy children
nodes are removed when the cabinets are expanded. This is a common technique
used with TreeView controls.

6.3.2.5.2 Expand TreeView Node

When a node is expanded, the Expand event is fired and handled by the
TreeView1_Expand() subroutine. The node that was clicked is
automatically passed to this subroutine as an argument.

The first thing this subroutine does is figure out what state the node is in by
examining the node's children. If the node has more than one child, it is already
expanded and the subroutine exits. If the node only has one child, and that child's
name is "***", then the dummy child node is removed. Then the subroutine adds
the node's real children. This is done in a manner similar to that described
previously for adding the cabinets to the root node. However, since a cabinet or
folder can contain documents or more folders, this logic is implemented twice:
once for folders, and again for documents. It is necessary to keep folders and
documents separate so the tree is built with the folders appearing first; otherwise,

Chapter 6 – Working with Screen Controls

282

the folders and documents would be mixed. Notice that dummy child nodes are
added to folders and that each time a node is added–folder or document–to the
tree, its type is saved in the node's Tag property, and the appropriate icon is
assigned from the ImageList.

Private Sub TreeView1_Expand(ByVal Node As MSComctlLib.Node)
 Dim docbaseNode As Node
 Dim q As IDfQuery
 Dim col As IDfCollection

 ' already expanded
 If (Node.Children > 1) Then
 Exit Sub
 ' check for empty child node
 ElseIf (Node.Children = 1) Then
 If (Node.Child.Text = "***") Then
 ' if the only node is the empty node, remove before
 ' continuing
 Me.TreeView1.Nodes.Remove Node.Child.Index
 End If
 End If

 ' set node icon to open
 Node.Image = "open"

 ' add sub folders
 Set q = cx.getQuery
 q.setDQL ("select r_object_id,object_name from dm_folder " _
 & "where FOLDER(ID('" & Node.Key & "')) order by " _
 & "object_name")
 Set col = q.execute(session, DF_READ_QUERY)
 While (col.Next = True)
 Set docbaseNode = Me.TreeView1.Nodes.Add _
 (Node.Index, tvwChild, _
 col.getString("r_object_id"), _
 col.getString("object_name"), "closed")

 docbaseNode.Tag = "dm_folder"

 ' this gives every node an empty child so that it gets
 ' the '+' icon in the tree view. Expanding this node must
 ' remove this node!

 Set docbaseNode = Me.TreeView1.Nodes.Add _
 (docbaseNode.Index, tvwChild, , "***", "closed")
 Wend

Chapter 6 – Working with Screen Controls

283

 col.Close

 ' add documents
 Set q = cx.getQuery
 q.setDQL ("select r_object_id,object_name from " _
 & "dm_document where FOLDER(ID('" & Node.Key & "')) " _
 & "order by object_name")
 Set col = q.execute(session, DF_READ_QUERY)
 While (col.Next = True)
 Set docbaseNode = Me.TreeView1.Nodes.Add _
 (Node.Index, tvwChild, _
 col.getString("r_object_id"), _
 col.getString("object_name"), "document")

 docbaseNode.Tag = "dm_document"
 Wend
 col.Close
End Sub

The key to the implementation of this subroutine is the use of the Node.Key
value (highlighted in the code listing with bold typeface). The queries in this
subroutine use the value stored in the Node.Key property to quickly and easily
gather the folders and documents subordinate to the expanded folder. Remember,
the Node.Key property contains the r_object_id of the object represented
by the tree node, in this case, a folder. Notice during the processing of each
collection in this subroutine that as a node is added to the TreeView, its
Node.Key property is populated with a corresponding r_object_id so that
this technique can be repeated when the next node is expanded.

6.3.2.5.3 Collapse TreeView Node

When a node is collapsed, all of its child nodes are removed. The
Nodes.Remove() method is used to repeatedly remove the first child of the
node until no children are left. Afterward, a dummy child node is added so the
node can be expanded again. I added some code to the while loop to check
whether the name of the selected object on the form in the Text2 TextBox
should be cleared because its parent node is collapsing. If so, the Text2
TextBox on the form is cleared. There is nothing Documentum-specific in this
subroutine.

Private Sub TreeView1_Collapse(ByVal Node As MSComctlLib.Node)

Chapter 6 – Working with Screen Controls

284

 Dim docbaseNode As Node

 ' show closed icon
 Node.Image = "closed"

 ' remove all child nodes
 While (Node.Children > 0)

 ' clear selected textbox
 If (Node.Child.Text = Me.Text2.Text) Then
 Me.Text2.Text = ""
 End If

 ' remove it
 Me.TreeView1.Nodes.Remove Node.Child.FirstSibling.Index
 Wend

 ' add empty child so it can be re-expanded
 Set docbaseNode = Me.TreeView1.Nodes.Add _
 (Node.Index, tvwChild, , "***", "closed")
End Sub

6.3.2.5.4 Click Event Handler

The Click event is fired when a node in the TreeView is clicked. The Click
event handler checks to see whether the selected node is a dm_document by
checking the Tag property. If it is, its title is displayed in the Text2 TextBox
(Selected) on the form. This Click event handler is very simple, but in a real
application, this is where the power of using the TreeView control reveals itself.
If you recall from the discussion of the Docbase-aware Docbase Browser control,
clicking on a leaf node (a document object), only allowed you to open the object.
Here, because we can trap the Click event, you can do anything you want. For
example, instead of displaying its name in the Text2 TextBox, you could check
it out, view it, or start it in a workflow.

Private Sub TreeView1_Click()

 If (Me.TreeView1.SelectedItem.Tag = "dm_document") Then
 Me.Text2.Text = Me.TreeView1.SelectedItem.Text
 End If

End Sub

Chapter 6 – Working with Screen Controls

285

This section focused on how to use Microsoft ActiveX controls to emulate both
Documentum validation controls and Docbase-aware controls. In all cases, it
involved writing more code than using the Documentum controls. However, the
result was a form with much finer control and more flexibility.

6.4 The Object Selector Form
To close this chapter, I present a real-world example of a form used to navigate a
Docbase and select an object. This form is analogous to the Documentum Open
Dialog control discussed earlier, but with a different look and more flexibility.
The flexibility manifests itself in the way you can trap and process any and all
events on the form, unlike the Documentum Open Dialog control. Therefore, you
can easily modify the form to save objects instead of select them, add a button to
create a new folder, or change the way the files are displayed.

Before I discuss the form, I want to mention that the code for the Object Selector
form is more robust than what has previously been presented. Up to now, most of
the code presented has been bare bones–intentionally so. I wanted to concentrate
on the specifics of what was discussed and demonstrated, and not get distracted
by a lot of error processing code, or session locking code. This source code is
different. It’s much more representative of how real application source code
should look, and implements error trapping and session locking.

I also want to mention I’m not going to explain all of this code. Much of it is
representative of techniques and source code you have already seen. Instead, I
will provide some general context and let you read the source code yourself. If
you wanted to convert this form to an ActiveX control, the conversion should be
fairly simple. I leave that as an exercise for you.

6.4.1 The Form

Figure 6.9 show an example of the Object Selector form. It allows the user to
select a cabinet in the Cabinets ComboBox and navigate its folder hierarchy
using a TreeView control. As each folder is expanded in the Folders TreeView
control, the documents it contains are displayed in the Files ListView control on
the right. When an object in either the Folders TreeView control or the Files

Chapter 6 – Working with Screen Controls

286

ListView control is clicked, the Object label is updated with the path and name of
the object selected. When the OK button is clicked, the name, path, and object Id
of the selected object are saved to variables that can be returned to the calling
subroutine.

This form is built using a combination of Microsoft ActiveX controls and
Documentum Docbase-aware controls. The Cabinets ComboBox is a
QueryListCombo Docbase-aware control, while the Folders TreeView control,
Files ListView control, and the Object label are Microsoft ActiveX controls.

Figure 6.9 - Object Selector Form

Figure 6.10 depicts a view of the form in design mode, and Table 6.10 offers a
brief description of each control. Note this form does not use default names for
controls. Instead, it uses more realistic, descriptive names.

Chapter 6 – Working with Screen Controls

287

Figure 6.10 - Designer View of Object Selector Form

Table 6.10 - Form Controls

Control Name Control Type Control Purpose
frm_ObjectSelector Form This is the main form.
cbx_Cabinets QueryListCombo This is the Cabinets

ComboBox. It is a
QueryListCombo Docbase-
aware control.

tv_Docbase TreeView This is the Folders TreeView
control that allows you to
navigate the Docbase.

lv_Files ListView This is the Files ListView
control that displays the
contents of a selected folder.
Set the View property =
lvwList.

lbl_ObjName Label This is the Object Label that
displays the full path of the
object selected.

Chapter 6 – Working with Screen Controls

288

Control Name Control Type Control Purpose
ImageList1 ImageList This is the TreeView's

associated ImageList.
btn_OK CommandButton This is the OK button.
btn_Cancel CommandButton This is the Cancel button.

6.4.2 The Code

To build this form, you will need to add a reference to your Visual Basic project.
Choose References from the Project menu in Visual Basic, and add:

• Documentum Desktop Client Utilities Manager Type Library.

You will also need to add two component libraries to your project. Choose
Components from the Project menu in Visual Basic, and add:

• Documentum Docbase-Aware Controls,
• Microsoft Windows Common Controls.

Finally, you will need to add the DcSessionLock.cls class file to your
project. The DcSessionLock.cls file is found in the /Utilities folder
of the Documentum Desktop Component Source code archive*.

The key to understanding the code for the Object Selector form is to realize that
all the screen controls are linked together, so that a change in one control
propagates to the others. This is accomplished by trapping events on the controls
and using their selections to affect the others. For example, a change in the
Cabinets ComboBox selected value is propagated to the Folders TreeView
control as the root folder. A click on a folder in the Folders TreeView
propagates three ways: First, the clicked folder is expanded or collapsed; second,
the folders path is displayed in the Object Label; and third, the content of the
folder is displayed in the Files ListView control. Figure 6.11 depicts this
interaction.

* You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 6 – Working with Screen Controls

289

Figure 6.11 - Interaction Of Controls On Object Selector Form

The code for the Object Selector form begins with variable declarations.
sessionId, cabinet, and objType are public variables set by the calling
subroutine. The sessionId is the session ID string used many times previously
in this book. cabinet is the name of the cabinet you want the control to open.
objType is the name of the Docbase object type you want displayed in the Files
ListView. cabinet and objType are optional variables, and will be discussed
in more detail later. objectId, objectPath, objectName, and bCancel
are the variables the form makes available to the calling subroutine. objectId
contains the r_object_id of the selected object; objectPath contains the
folder path of the selected object; objectName contains the object_name of
the selected object, and bCancel returns true if the Cancel button was
clicked.

The remaining four variables are used to establish local references to the DFC
client, and enable error reporting. This should be standard fare by now.

Chapter 6 – Working with Screen Controls

290

Source Code A working example of this source code can be found in the
"Chapter6/Object Selector" directory of the source code archive.

' Object Selector form

Option Explicit

' passed in
Public sessionId As String
Public cabinet As String ' optional
Public objType As String ' optional

' result values returned via these variable
Public objectId As String
Public objectPath As String
Public objectName As String
Public bCancel As Boolean

' global to form
Private client As IDfClient
Private cx As DFCLib.DfClientX
Private session As IDfSession
Private r As New DcReport

' Win32 API
Private Declare Function GetDesktopWindow Lib "user32" () As Long

The Form_Load() subroutine confirms the form has a sessionId and then
creates the local DFC client objects. After the local DFC client objects are
created, it initializes the Docbase-aware ComboBox and calls the
loadCabinets() subroutine with cabinet as an argument. Notice
bCancel is set to True, and the OK button is disabled. bCancel is set to
false when the OK button is clicked. The OK button is never enabled until an
object in the Files ListView control is selected. This prevents a user from
clicking the OK button without selecting an object.

Private Sub Form_Load()

 ' setup DFC client vars
 If (sessionId = "") Then
 MsgBox "You must set the sessionID property of the " _
 & "form before showing it", vbExclamation, _
 "No Session"
 Exit Sub

Chapter 6 – Working with Screen Controls

291

 End If

 Set cx = New DFCLib.DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionId)

 ' init dctm controls
 Me.cbx_Cabinets.setSession session

 ' assume cancel until OK clicked
 bCancel = True

 ' disble OK button
 Me.btn_OK.Enabled = False

 ' load cabinets into combobox
 Call loadCabinets(cabinet)

End Sub

When the Cancel button is clicked, all the form's return values are set to empty
strings, the bCancel variable is set to True, and the form is unloaded.

Private Sub btn_Cancel_Click()

 ' clear return values
 objectPath = ""
 objectName = ""
 objectId = ""
 bCancel = True
 Unload Me

End Sub

When the OK button is clicked, the form's return values are populated, the
bCancel variable is set to False, and the form is unloaded. A quick and easy
way to obtain the object’s path and object Id is through clever use of TreeView
item's Tag and the ListView item's Key properties. I’ll explain these in more
detail later.

Private Sub btn_OK_Click()

 ' set return values
 objectPath = Me.tv_Docbase.SelectedItem.Tag

Chapter 6 – Working with Screen Controls

292

 objectName = Me.lv_Files.SelectedItem.Text
 objectId = Me.lv_Files.SelectedItem.Key

 bCancel = False
 Unload Me

End Sub

The loadCabinets() subroutine loads all the names of the cabinets in the
Docbase, into the Cabinets ComboBox. It then searches the ComboBox’s items
for the name of the cabinet passed in, and sets it as the default. The last thing it
does is call the event handler for the SelectionChanged event on the
ComboBox. As you will see in a moment, the SelectionChanged event
handler loads the TreeView control with the folders in the selected cabinet. By
calling this subroutine directly, we emulate a selection change in the ComboBox
and cause the Folders TreeView to initialize.

Private Sub loadCabinets(cabinet As String)
 Dim sessionLock As DcSessionLock
 Dim i As Integer

 On Error GoTo HandleError

 Set sessionLock = lockSession(session, "Load Cabinets")

 ' load cbx control
 Me.cbx_Cabinets.query = "select object_name from " _
 & "dm_cabinet order by object_name"
 Me.cbx_Cabinets.Refresh

 ' set default cabinet
 i = Me.cbx_Cabinets.findString(0, cabinet)
 If (i > -1) Then
 Me.cbx_Cabinets.ListIndex = i
 End If

 ' force first event
 Call cbx_Cabinets_SelectionChanged

HandleError:

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 reporter.AddException e

Chapter 6 – Working with Screen Controls

293

 reporter.Display GetDesktopWindow, DC_REPORT_OK_ONLY
 End If

 If (Not sessionLock Is Nothing) Then
 sessionLock.ReleaseLock
 End If
End Sub

The event handler for the SelectionChanged event is really a thin wrapper
around the subroutine that loads the TreeView control. It is wrapped like this for
one reason, which is to do some preprocessing before the TreeView control is
actually called. First, it ensures that the OK button is disabled to protect against a
user having selected an object in the File ListView and then clicking on the
Folders TreeView again. Second, it displays the name of the selected cabinet in
the Object Label. Finally, the call to loadTVNode() is made and the name of
the selected cabinet in the Cabinets ComboBox is passed as an argument.

Private Sub cbx_Cabinets_SelectionChanged()

 ' disable OK button
 Me.btn_OK.Enabled = False

 ' update text box with cabinet path
 Me.lbl_ObjName.Caption =
 Me.cbx_Cabinets.List(Me.cbx_Cabinets.ListIndex)

 ' load TV with cabinet
 Call loadTVNode(Me.cbx_Cabinets.List _
 (Me.cbx_Cabinets.ListIndex))

End Sub

The TreeView subroutines (load, expand, and collapse) are generally the same as
those discussed in Section 6.3.2.5, Docbase Browser TreeView. Noted exceptions
are: the queries are different, and the value assigned to each node’s Tag property
is the object's full Docbase path as opposed to its object type. Assigning the
object's Docbase path to the node's Tag property makes it much easier to retrieve
and display it later. Notice the object’s r_object_id is used for the node’s
Key property. This also expedites its retrieval later.

Chapter 6 – Working with Screen Controls

294

Private Sub loadTVNode(currentPath As String)
 Dim tempNode As Node
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim sessionLock As DcSessionLock

 On Error GoTo HandleError

 ' clear the tv
 Me.tv_Docbase.Nodes.Clear

 ' get folders with currentpath in r_folder_path attr
 Set q = cx.getQuery
 q.setDQL ("select r_object_id,object_name from dm_folder " _
 & "where any r_folder_path = '/" & currentPath _
 & "' order by object_name")

 ' get session lock
 Set sessionLock = lockSession(session, "Load TV Node")

 Set col = q.execute(session, DF_READ_QUERY)
 While (col.Next = True)
 Set tempNode = Me.tv_Docbase.Nodes.Add _
 (, , col.getString("r_object_id"), _
 col.getString("object_name"), "closed")

 tempNode.Tag = "/" & col.getString("object_name")

 ' Give every node an empty child so that it gets the
 ' + icon in the tree view. Expanding this node must
 ' remove this node!

 Set tempNode = Me.tv_Docbase.Nodes.Add(tempNode.Index, _
 tvwChild, , "***", "closed")

 ' selecting the node generates an 'Expand' event
 tempNode.Selected = True
 Wend
 col.Close

HandleError:

 If (Not sessionLock Is Nothing) Then
 sessionLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then

Chapter 6 – Working with Screen Controls

295

 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If
 End If

End Sub

Private Sub tv_Docbase_Expand(ByVal Node As MSComctlLib.Node)
 Dim newNode As Node
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim sessionLock As DcSessionLock

 On Error GoTo HandleError

 ' already expanded
 If (Node.Children > 1) Then
 Call updateNodeFiles
 Exit Sub
 ' check for empty child node
 ElseIf (Node.Children = 1) Then
 If (Node.Child.Text = "***") Then
 ' if the only node is the empty node, remove before
 ' continuing
 Me.tv_Docbase.Nodes.Remove Node.Child.Index
 End If
 End If

 ' set node icon to open
 Node.Image = "open"

 ' get session lock
 Set sessionLock = lockSession(session, "Expand Node")

 ' add folders
 Set q = cx.getQuery
 q.setDQL ("select r_object_id,object_name from dm_folder " _
 & "where FOLDER(ID('" & Node.Key & "')) order by " _
 & "object_name")
 Set col = q.execute(session, DF_READ_QUERY)

Chapter 6 – Working with Screen Controls

296

 While (col.Next = True)
 Set newNode = Me.tv_Docbase.Nodes.Add _
 (Node.Index, tvwChild, _
 col.getString("r_object_id"), _
 col.getString("object_name"), "closed")

 newNode.Tag = Node.Tag & "/" _
 & col.getString("object_name")

 ' this gives every node an empty child so that it gets
 ' the '+' icon in the tree view. Expanding this node
 ' must remove this node!

 Set newNode = Me.tv_Docbase.Nodes.Add(newNode.Index, _
 tvwChild, , "***", "closed")
 Wend
 col.Close

 ' release lock before entering sub
 If (Not sessionLock Is Nothing) Then
 sessionLock.ReleaseLock
 End If

 ' update the file list control
 Call updateNodeFiles

 ' update path in text box
 Me.lbl_ObjName.Caption = Node.Tag

HandleError:

 If (Not sessionLock Is Nothing) Then
 sessionLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If
 End If

Chapter 6 – Working with Screen Controls

297

End Sub

Private Sub tv_Docbase_Collapse(ByVal Node As MSComctlLib.Node)
 Dim dumbNode As Node

 ' show closed icon
 Node.Image = "closed"

 ' remove all child nodes
 While (Node.Children > 0)
 Me.tv_Docbase.Nodes.Remove Node.Child.FirstSibling.Index
 Wend

 ' add empty child so it can be re-expanded
 Set dumbNode = Me.tv_Docbase.Nodes.Add(Node.Index, _
 tvwChild, , "***", "closed")

End Sub

Forcing the Files ListView to update every time a folder is expanded or collapsed
is accomplished by trapping the Click event for the TreeView control. The
Click event fires after the expand or collapse. The Click event handler calls
updateNodeFiles() to update the Files ListView control.

Private Sub tv_Docbase_Click()

 ' disble OK button
 Me.btn_OK.Enabled = False

 ' update file list box
 Call updateNodeFiles

 ' update result text box
 Me.lbl_ObjName.Caption = Me.tv_Docbase.SelectedItem.Tag

End Sub

The updateNodeFiles() subroutine populates the Files ListView control
with the names of the objects in the folder selected in the Folders TreeView that
are of type objType. Remember, objType was passed into the form from the
calling subroutine. If objType is the empty string, the subroutine defaults it to
dm_sysobject. The trick to easily obtaining the objects in the selected folder

Chapter 6 – Working with Screen Controls

298

is to use the selected node’s (folder’s) Key property in the query. Remember, we
saved the folder’s r_object_id in the node’s Key property when we built the
TreeView. The same technique is used when we build the ListView: the object’s
r_object_id is saved in the ListItem’s Key property. This expedites
retrieving an item’s r_object_id when it is selected in the ListView control.

Notice the code filters out folders while adding the results of the query to the
ListView control by checking if an object's r_object_id begins with 0b.
Displaying folders in the Files ListView could be confusing in this interface.

Private Sub updateNodeFiles()
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim sessionLock As DcSessionLock

 On Error GoTo HandleError

 ' get session lock
 Set sessionLock = lockSession(session, "Update Node Files")

 ' clear files in control
 Me.lv_Files.ListItems.Clear

 ' default object type
 If (objType = "") Then
 objType = "dm_sysobject"
 End If

 Set q = cx.getQuery
 q.setDQL ("select r_object_id,object_name from " _
 & objType & " where FOLDER(ID('" _
 & Me.tv_Docbase.SelectedItem.Key & "')) order by " _
 & "object_name")
 Set col = q.execute(session, DF_READ_QUERY)
 While (col.Next = True)

 ' if it's not a folder, add it to lv
 If (InStr(1, col.getString("r_object_id"), "0b", _
 vbTextCompare) <> 1) Then
 Me.lv_Files.ListItems.Add , _
 col.getString("r_object_id"), _
 col.getString("object_name")
 End If
 Wend

Chapter 6 – Working with Screen Controls

299

 col.Close

HandleError:

 If (Not sessionLock Is Nothing) Then
 sessionLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If
 End If

End Sub

The final subroutine, lv_Files_Click(), traps the Click event on the
ListView control. Once activated, this subroutine updates the Object Label by
assessing both the TreeView and the ListView controls. Most importantly, it
enables the OK button.

Private Sub lv_Files_Click()

 ' if nothing to select in control, exit
 If (Me.lv_Files.ListItems.Count = 0) Then
 Exit Sub
 End If

 ' update textbox with object selected
 Me.lbl_ObjName.Caption = Me.tv_Docbase.SelectedItem.Tag _
 & "/" & Me.lv_Files.SelectedItem.Text

 ' enable OK button
 Me.btn_OK.Enabled = True

End Sub

Chapter 6 – Working with Screen Controls

300

Though present in the example, I will not discuss the lockSession() and
sleep() subroutines; they are the same ones presented in Chapter 5, Proven
Solutions for Common Tasks.

6.4.3 Using The Form

To use the Object Selector form, simply declare it, set the appropriate variables,
and Show() it, as demonstrated below.

Dim frm As New frm_ObjectSelector

frm.sessionId = sessionId
frm.cabinet = "Temp"
frm.Show vbModal

If (Not frm.bCancel) Then
 MsgBox "Choosen file: " & frm.objectName & vbCrLf _
 & "Path: " & frm.objectPath & vbCrLf & "Object Id: " _
 & frm.objectId, vbInformation, "Object Selected"
Else
 MsgBox "Form Canceled", vbInformation, "form Canceled"
End If

Set frm = Nothing

The results of this code are shown in Figure 6.12 and Figure 6.13.

Chapter 6 – Working with Screen Controls

301

Figure 6.12 - Object Selector Form

Figure 6.13 - Object Selector Result

6.5 Chapter Summary
This chapter examined three types of screen controls: Documentum validation
controls, Documentum Docbase-aware controls, and Microsoft ActiveX controls.
Each of these types of controls are useful in their own way. Documentum
validation controls are very object-specific. These controls are initialized with an
object and draw all of their information from objects or the data dictionary. These
controls can be linked together using conditional value assistance so a change in
one control affects the content of another control. The Documentum Event
Dispatcher control manages these linkages.

Chapter 6 – Working with Screen Controls

302

Documentum Docbase-aware Controls are controls with broader application.
These controls often use DQL queries as the source of their content and are used
to display information such as the names of all the users in the Docbase, or to
implement the Docbase Browser Control and Open Dialog.

The third set of controls that were examined was the Microsoft ActiveX controls.
With these controls, you saw how to emulate the Documentum validation and
Docbase-aware controls. The advantage to fashioning your own Docbase controls
out of Microsoft ActiveX controls is you have much greater control over how the
controls reacted (i.e., event handlers). The disadvantage is you have to write a lot
more code than with the Documentum-provide controls.

The final portion of the chapter was an example called the Object Selector form.
With it, I demonstrated how to use a combination of Docbase-aware controls and
Microsoft ActiveX controls to create a replacement for the Documentum Open
Dialog control. The advantage to this form over the Documentum Open Dialog is
you can easily change it to look and act as you need. You will see the Object
Selector form again in Chapter 8, Putting It All Together in a Sample Application.

Chapter 7 – Tips, Tools and Handy Information

303

7
7 Tips, Tools and Handy

Information
This chapter contains an assortment of tips, tools and information that didn't fit
well into the earlier chapters. For example, this chapter discusses how to use the
Documentum API, where to find some valuable hidden tools on the server, and
tables of frequently used values and constants. Many of these topics were
referenced in earlier chapters, but the inclusion of the information at those points
seemed awkward. Therefore, I collected it all here, in one big eclectic chapter.
Enjoy.

7.1 The Documentum API
The Documentum API is a set of parameterized, command-style methods. The
DFC is really an object-oriented wrapper around the API. The API has remained
relatively unchanged over time, and that's good news because it means
Documentum has maintained a high degree of backward compatibility with
customers' customizations.

Chapter 7 – Tips, Tools and Handy Information

304

The Documentum API consists of more than 140 server and client methods that
are all accessed through three functions: dmAPIGet(), dmAPISet(), and
dmAPIExec(). Use of the API, as described in this section, is usually reserved
for programming languages that cannot take advantage of the DFC's object-
oriented interfaces, or for API scripts specifically written for the iAPI32
command line utility discussed in Section 7.4, The iAPI32 and iDQL32 Command
Line Utilities. For more information regarding the API methods, see the
Documentum Content Server API Reference Manual. Note that all arguments in
section are strings.

7.1.1 dmAPIExec()

The dmAPIExec() function executes server and client methods. dmAPIExec()
returns TRUE (1) or FALSE (0) based upon the success or failure of the method it
executes. The basic syntax is:

success = dmAPIExec("<method name>, <session id>,
 <method args>")

where <method name> is a Documentum method name, <session id> is a
Documentum session identifier*, and <method arguments> are arguments
required by <method name>.

For example:

rv = dmAPIExec("close,c,q0")

where q0 is the Id of an open collection.

* This session identifier is not an IDfSession object, or session Id as discussed previously in this book. It is usually the
letter 'c' (for 'current'), or an 's' followed by a number assigned by the server. Most often the 'c' notation is used.

Chapter 7 – Tips, Tools and Handy Information

305

7.1.2 dmAPIGet()

The dmAPIGet() function retrieves information from the server.
dmAPIGet() returns a string containing the information that was requested.
The basic syntax is:

value = dmAPIGet("<method name>, <session id>, <method args>")

where <method name> is a Documentum method name, <session id> is a
Documentum session identifier, and <method arguments> are arguments
required by <method name>.

For example:

title = dmAPIGet("get,c,0900218d800554f6,title")

where 0900218d800554f6 is the Id of a dm_sysobject, and title is the
name of an attribute of that object.

7.1.3 dmAPISet()

The dmAPISet() function sets the value of an attribute on an object.
dmAPISet() returns TRUE (1) or FALSE (0) based upon the success or failure
of setting the indicated value. The basic syntax is:

success = dmAPISet("<method name>, <session id>,
 <method args>", "<value>")

where <method name> is a Documentum method name, <session id> is a
Documentum session identifier, <method arguments> are arguments
required by <method name>, and <value> is the value of the attribute to set.

For example:

rv = dmAPISet("set,c,0900218d800554f6,title","The Three
 Bears")

Chapter 7 – Tips, Tools and Handy Information

306

where 0900218d800554f6 is the Id of a dm_sysobject, title is the
name of the attribute to set, and The Three Bears is the value of the title.

7.2 The Documentum API from the DFC
The Documentum API is also directly accessible from the DFC, although the
syntax is slightly different. The IDfSession class contains the accessor methods
apiExec(), apiGet(), and apiSet(), which are analogous to
dmAPIExec(), dmAPIGet(), and dmAPISet(). The primary difference
in syntax between the API functions and their DFC counterparts is the absence of
the session identifier in the latter. Since the accessor methods belong to the
IDfSession class, they are already aware of the session so don't require it to be
passed with each method call. There is rarely any reason to call the API directly
from the DFC, and Documentum recommends not doing it. In some instances
(e.g., the Business Object Framework), direct API calls do not function properly.
Note, once again, that all of the arguments are strings.

7.2.1 apiExec()

The apiExec() method returns a Boolean variable, true for success and
false for failure. Its basic syntax is:

success = session.apiExec("<method name>", "<method args>")

where session is an IDfSession object, <method name> is a Documentum
method name, and <method arguments> are arguments required by
<method name>.

For example:

rv = session.apiExec ("close","q0")

where q0 is the Id of an open collection.

Chapter 7 – Tips, Tools and Handy Information

307

7.2.2 apiGet()

The apiGet() method returns a String variable. Its basic syntax is:

value = session.apiGet("<method name>", "<method args>")

where session is an IDfSession object, <method name> is a Documentum
method name, and <method arguments> are arguments required by
<method name>.

For example:

title = session.apiGet("get","0900218d800554f6,title")

where 0900218d800554f6 is the Id of a dm_sysobject, and title is the
name of an attribute.

7.2.3 apiSet()

The apiSet() method returns a Boolean variable, true for success and
false for failure. Its basic syntax is:

success = session.apiSet ("<method name>", "<method args>,
 <value>")

where <method name> is a Documentum method name, <method
arguments> are arguments required by <method name>, and <value> is
the value of the attribute to set.

For example:

rv = session.apiSet ("set","0900218d800554f6,title,The Three
 Bears")

where 0900218d800554f6 is the Id of a dm_sysobject, title is the
name of the attribute to set, and The Three Bears is the value of the title.

Chapter 7 – Tips, Tools and Handy Information

308

7.3 The Interactive Message Tester
The Interactive Message Tester (IMT) is a quick and dirty API editor built into
the Documentum Desktop. Actually, it's a hold over from an older version of the
Desktop named WorkSpace. Nonetheless, it is a handy tool that allows you to
obtain information about selected items in the Desktop, and execute API
commands against them.

To use the IMT in Documentum 5, you must specifically enable the deprecated
WorkSpace capabilities. To enable them, simply create an empty
dm_document object named Enable_EDMS98_Client in the
/System/Desktop Client folder of your Docbase. To access the IMT,
click Documentum Help on the Help menu while holding down the control key
(Ctrl). The IMT user interface is shown in Figure 7.1.

Figure 7.1 - Interactive Message Tester

To obtain information about the selected item in the Documentum Desktop, enter:

getdata,c,dcapp,selected

This will return the selected object's, r_object_id. Once you have it, you can
execute any API method on the object, including set(). One very useful API
method is dump(). You execute dump() like this (assuming your
r_object_id is 090023eb800022f8 as above):

Chapter 7 – Tips, Tools and Handy Information

309

dump,c,090023eb800022f8

Unfortunately, the output format in the IMT is not the greatest (it doesn't word
wrap); however, the output can easily be cut and pasted into a text editor for
further analysis.

Another terrific use of the IMT is to quickly enable and disable tracing (tracing
was discussed in Chapter 5, Proven Solutions to Common Problems). To enable
tracing, simply enter:

trace,c,10,"c:\temp\trace-10.log"

To disable tracing, enter:

trace,c,0

7.4 The iAPI32 and iDQL32 Command Line
Utilities

The iAPI32 and iDQL32 are invaluable tools, but difficult to find because they
are buried on the server. Both of these tools are located on the server in the
%DM_HOME%\bin directory. I usually copy them (iapi32.exe and
idql32.exe) to my workstation for quick, easy access.

The iAPI32 utility is an interactive API editor. It allows you to interactively enter
API commands to affect the Docbase, or run API script files. Its use is fully
documented in the Documentum Content Server Administrator's Guide.

Similarly, the iDQL32 utility is an interactive DQL editor. It allows you to
interactively enter DQL commands to affect the Docbase, or run DQL script files.
It, too, is fully documented in the Documentum Content Server Administrator's
Guide.

Chapter 7 – Tips, Tools and Handy Information

310

7.5 Samson
Samson is an unsupported tool distributed with the Documentum Server. It puts a
Windows UI on the iAPI32 and iDQL32 tools and calls them iAPIPlus and
iDQLPlus, respectively. Besides just the UI aspects of the tool, it also includes
numerous canned queries useful for administrative tasks. Samson is also buried
on the server. It is located in the %DM_HOME%\unsupported\win\samson
directory. I usually copy this entire folder to my workstation for quick, easy
access to Samson. Samson is fully documented in the SAMSON.doc file also
located in that directory.

7.6 Resetting The Documentum Desktop
During the development, debugging, and testing process, it is often necessary to
point the Documentum Desktop at a different DocBroker, or re-initialize its local
settings. To accomplish this, simply switch to offline mode by choosing Work
Offline from the File menu. Then, switch to online mode by selecting Work
Offline again from the File menu. When you switch from offline mode to online
mode, the Documentum Desktop re-reads the dmcl.ini file and reinitializes all
of its local settings.

This technique can be employed whenever you need the Documentum Desktop to
re-read the dmcl.ini file, not just to switch DocBrokers. For example, you
may want to change the cache query setting (as described in Chapter 3, Working
with Queries and Collections), or any of the other settings described in Section
7.8, Anatomy of the dmcl.ini File.

7.7 Clearing The Client-Side Caches
Occasionally, it is necessary to manually clear the client-side caches. You may
have done this in Chapter 6, Working with Screen Controls, if the conditional
value assistance was not working. Documentum applications have two caches
that may need to be cleared. The first is the Docbase cache. This is usually found
in a folder in the %DOCUMENTUM% directory with the same name as the Docbase.
To clear it, delete the folder and all of its contents. The Documentum Desktop
will automatically re-create it.

Chapter 7 – Tips, Tools and Handy Information

311

The second cache is the DMCL cache. This cache is usually in a folder named
dmcl in the %DOCUMENTUM% directory. To delete this cache, open the dmcl
folder and delete its contents–do not delete the actual folder.

7.8 Anatomy Of The dmcl.ini File
The dmcl.ini file is the client-side configuration file. It is located in your
c:\Windows directory. The dmcl.ini file is automatically read every time
your application starts. Generally, this file is simple in content as illustrated in the
following example.

#Default DMCL.INI. Refer to DMCLFULL.INI for other options

[DOCBROKER_PRIMARY]
host = 192.168.0.1
port = 1489

[DMAPI_CONFIGURATION]
cache_queries = T

However, the dmcl.ini file can be much more complicated and control a wide
range of features affecting how your client functions. Documentum provides the
dmclfull.ini file as an example and documentation of the full capabilities of
the dmcl.ini file. The dmclfull.ini file can also be found in your
c:\Windows directory. The following discussion highlights some of the more
commonly used features controlled by this file.

7.8.1 Backup DocBroker

The DOCBROKER_BACKUP section lists alternate DocBrokers the client should
try if the DOCBROKER_PRIMARY is unavailable. Each backup DocBroker entry
must use both the host and the service keys.

[DOCBROKER_BACKUP_<n>] where <n> is 1-8
host = <string>

Chapter 7 – Tips, Tools and Handy Information

312

service = dmdocbroker

7.8.2 Client-Side Cache Size

The size of the client-side cache can be controlled by the
client_cache_size key in the DMAPI_CONFIGURATION section. The
default value of -1 causes the cache size to be infinite.

[DMAPI_CONFIGURATION]
client_cache_size = -1

7.8.3 Local Path

The local_path key of the DMAPI_CONFIGURATION section indicates
where the client should store its local temporary files. For example, files fetched
from the Content Server for viewing. If this value is not set, the client
automatically uses your default working directory on Windows, and the /tmp
directory on Unix.

[DMAPI_CONFIGURATION]
local_path = c:\windows\temp

7.8.4 Batch Hint Size

The batch_hint_size key of the DMAPI_CONFIGURATION section
suggests an optimal size for data transported across the network. This value
affects both client to Content Server and Content Server to RDBMS traffic. It is
only a suggestion, there is no guarantee it will be respected. The default value is
20; however, on high-latency networks, a larger value may improve performance.

[DMAPI_CONFIGURATION]
batch_hint_size = 20

Chapter 7 – Tips, Tools and Handy Information

313

7.8.5 Compression

Compression of content on low-bandwidth networks can improve performance.
By default, compression is disabled.

[DMAPI_CONFIGURATION]
use_compression = F

7.8.6 Cached Queries

Cached queries were discussed in Chapter 3, Working with Queries and
Collections. Setting the cache_queries key is only one of two steps required
to enable query caching. The default value is F.

[DMAPI_CONFIGURATION]
cache_queries = T

7.8.7 Tracing

Enabling tracing through the dmcl.ini file was discussed in Chapter 5, Proven
Solutions to Common Tasks. These are the default values.

[DMAPI_CONFIGURATION]
trace_level = 0
trace_file = ""

7.9 Anatomy Of The r_object_id
r_object_ids are not just random numbers, they are composed of three
distinct parts: the type identifier, the Docbase Id, and the object Id.
Understanding the anatomy of the r_object_id can give you greater insight to
objects in your Docbase. For example, consider this r_object_id:

0900218d80034cc7

If you think of it in its three parts, you might conceptualize it like this:

Chapter 7 – Tips, Tools and Handy Information

314

09-00218d-80034cc7

The first two digits of the r_object_id represent the type identifier. A
complete list of these identifiers can be found in Section 7.10, Object Type
Identifiers. Custom object types do not receive custom type identifiers; rather
they inherit the same type identifier as their parent (supertype). For example, a
custom object type, regional_doc, that inherits from dm_document will be
represented by 09, the same as the dm_document. Knowing object type codes
can be a handy coding and debugging tool.

The next six digits of the r_object_id are the Docbase Id of the Docbase
where the object was created. In this case, 00218d, which is the hexadecimal
representation of the Id I assigned to my development Docbase. Docbase Ids help
ensure the global uniqueness of an r_object_id. Production Docbases should
always use Docbase Ids assigned by Documentum (the company). These Ids are
never reused and are assigned to customers in blocks. Knowing your Docbase Id
can help you quickly identify objects that were replicated or loaded into your
Docbase as opposed to originating in it.

The final eight digits of the r_object_id represent the object’s unique
identifier in the Docbase. This number is generated by the Content Server and is
a sequential number. Therefore, it is a safe bet that an object with a greater
unique identifier was created after one with a lesser identifier. For example, it is
safe to assume 0900218d80034cc7 was created before
0900218d80034cc8, based upon the value of the last eight digits of the
r_object_id.

7.10 Object Type Identifiers
As mentioned in Section 7.9, Anatomy of the r_object_id, the first two characters
of the r_object_id represent the type identifier. Table 7.1 lists the most
common object types with their hexadecimal identifiers. The left table is sorted
by type name, and the right table is sorted by hex id.

Chapter 7 – Tips, Tools and Handy Information

315

Table 7.1 - Object Type Identifiers

Type Name Hex
Id

Type Name Hex
Id

dm_acl 45 dm_auth_config 00
dm_activity 4c dm_state_type 00
dm_aggr_domain 51 dmi_audittrail_attrs 00
dm_alias_set 66 dm_session 01
dm_app_ref 07 dm_type 03
dm_application 08 dmr_containment 05
dm_assembly 0d dmr_content 06
dm_audittrail 5f dm_app_ref 07
dm_audittrail_acl 5f dm_application 08
dm_audittrail_group 5f dm_cache_config 08
dm_auth_config 00 dm_category_class 08
dm_blobstore 40 dm_ci_config 08
dm_builtin_expr 54 dm_component 08
dm_ca_store 6a dm_job 08
dm_cabinet 0c dm_ldap_config 08
dm_cache_config 08 dm_locator 08
dm_category 0b dm_media_profile 08
dm_category_assign 37 dm_procedure 08
dm_category_class 08 dm_qual_comp 08
dm_ci_config 08 dm_script 08
dm_component 08 dm_smart_list 08
dm_cond_expr 56 dm_sysobject 08
dm_cond_id_expr 57 dm_webc_config 08
dm_dd_info 4e dm_webc_target 08
dm_display_config 6b dm_docset 09
dm_distributedstore 2c dm_docset_run 09
dm_docbase_config 3c dm_document 09
dm_docbaseid_map 44 dm_email_message 09
dm_docset 09 dm_esign_template 09

Chapter 7 – Tips, Tools and Handy Information

316

Type Name Hex
Id

Type Name Hex
Id

dm_docset_run 09 dm_xml_config 09
dm_document 09 dm_xml_custom_code 09
dm_domain 50 dm_xml_style_sheet 09
dm_dump_record 2f dm_xml_zone 09
dm_email_message 09 dm_query 0a
dm_esign_template 09 dm_category 0b
dm_expression 52 dm_folder 0b
dm_extern_file 61 dm_taxonomy 0b
dm_extern_free 63 dm_xml_application 0b
dm_extern_store 60 dm_cabinet 0c
dm_extern_url 62 dm_assembly 0d
dm_federation 5e dm_store 0e
dm_filestore 28 dm_method 10
dm_folder 0b dm_user 11
dm_foreign_key 65 dm_group 12
dm_format 27 dm_outputdevice 17
dm_fulltext_index 3b dm_router 18
dm_func_expr 55 dm_registered 19
dm_group 12 dmi_queue_item 1b
dm_job 08 dmi_tdk_collect 1c
dm_key 59 dmi_vstamp 1e
dm_ldap_config 08 dmi_index 1f
dm_linkedstore 2a dmi_sequence 20
dm_literal_expr 53 dmi_otherfile 23
dm_load_record 31 dmi_tdk_index 24
dm_location 3a dmi_registry 26
dm_locator 08 dm_format 27
dm_media_profile 08 dm_filestore 28
dm_method 10 dm_linkedstore 2a
dm_mount_point 3e dmi_linkrecord 2b

Chapter 7 – Tips, Tools and Handy Information

317

Type Name Hex
Id

Type Name Hex
Id

dm_nls_dd_info 4f dm_distributedstore 2c
dm_note 41 dmi_replica_record 2d
dm_outputdevice 17 dm_type_info 2e
dm_plugin 67 dm_dump_record 2f
dm_policy 46 dmi_dump_object_record 30
dm_procedure 08 dm_load_record 31
dm_process 4b dmi_load_object_record 32
dm_qual_comp 08 dmi_change_record 33
dm_query 0a dm_category_assign 37
dm_reference 47 dm_relation 37
dm_registered 19 dm_state_extension 37
dm_relation 37 dm_relation_type 38
dm_relation_type 38 dm_location 3a
dm_router 18 dm_fulltext_index 3b
dm_scope_config 6c dm_docbase_config 3c
dm_script 08 dm_server_config 3d
dm_server_config 3d dm_mount_point 3e
dm_session 01 dm_blobstore 40
dm_smart_list 08 dm_note 41
dm_state_extension 37 dm_docbaseid_map 44
dm_state_type 00 dm_acl 45
dm_store 0e dm_policy 46
dm_sysobject 08 dm_reference 47
dm_taxonomy 0b dmi_package 49
dm_type 03 dmi_workitem 4a
dm_type_info 2e dm_process 4b
dm_user 11 dm_activity 4c
dm_value_assist 5a dm_workflow 4d
dm_value_func 5d dm_dd_info 4e
dm_value_list 5b dm_nls_dd_info 4f

Chapter 7 – Tips, Tools and Handy Information

318

Type Name Hex
Id

Type Name Hex
Id

dm_value_query 5c dm_domain 50
dm_webc_config 08 dm_aggr_domain 51
dm_webc_target 08 dm_expression 52
dm_workflow 4d dm_literal_expr 53
dm_xml_application 0b dm_builtin_expr 54
dm_xml_config 09 dm_func_expr 55
dm_xml_custom_code 09 dm_cond_expr 56
dm_xml_style_sheet 09 dm_cond_id_expr 57
dm_xml_zone 09 dmi_expr_code 58
dmi_audittrail_attrs 00 dm_key 59
dmi_change_record 33 dm_value_assist 5a
dmi_dd_attr_info 6a dm_value_list 5b
dmi_dd_common_info 68 dm_value_query 5c
dmi_dd_type_info 69 dm_value_func 5d
dmi_dump_object_record 30 dm_federation 5e
dmi_expr_code 58 dm_audittrail 5f
dmi_index 1f dm_audittrail_acl 5f
dmi_linkrecord 2b dm_audittrail_group 5f
dmi_load_object_record 32 dm_extern_store 60
dmi_otherfile 23 dm_extern_file 61
dmi_package 49 dm_extern_url 62
dmi_queue_item 1b dm_extern_free 63
dmi_registry 26 dmi_subcontent 64
dmi_replica_record 2d dm_foreign_key 65
dmi_sequence 20 dm_alias_set 66
dmi_subcontent 64 dm_plugin 67
dmi_tdk_collect 1c dmi_dd_common_info 68
dmi_tdk_index 24 dmi_dd_type_info 69
dmi_vstamp 1e dm_ca_store 6a
dmi_workitem 4a dmi_dd_attr_info 6a

Chapter 7 – Tips, Tools and Handy Information

319

Type Name Hex
Id

Type Name Hex
Id

dmr_containment 05 dm_display_config 6b
dmr_content 06 dm_scope_config 6c

Notice that many object types have an identifier of 08 or 09 (dm_sysobject
or dm_document, respectively), demonstrating that even Documentum's basic
object types use inheritance.

7.11 Attribute Data Types
All object attributes must be one of the six data types list in Table 7.2. As you
can see from the middle column, these data types are implemented differently in
different RDBMS. However, the Documentum API and the DFC normalize these
differences for you, as long as you refer to, and operate on, the Documentum
defined data types.

Table 7.2 - Documentum Attribute Types

Documentum
Attribute Data

Type

Type
Code

Database Data Type
(Oracle/ SQL Server)

Range of Values

dm_boolean 0 number(6)/integer 1 (true), 0 (false)
dm_integer 1 number(10)/integer -2147483647 to

2147483647
dm_string 2 char(2000)/varchar(7000) 0 – RDBMS maximum
dm_id 3 char(16)/char(16) There is no range of

values for this data
type, however, all Ids
are 16 characters in
length.

dm_time 4 date/datetime 1/1/1753 to 12/31/9999
dm_double 5 number/float RDBMS specific.

Minimum of 1x10-129 to
1x10129

Chapter 7 – Tips, Tools and Handy Information

320

7.12 Computed Attributes
dm_sysobjects have a set of attributes that are not stored as part of the object
in the Docbase, but are computed on demand. These attributes are only accessible
through the DFC and API (i.e., they are not accessible from DQL), and are
primarily for internal use by the Content Server. However, they can also be
valuable to developers. Table 7.3 lists the most common computed attributes and
how to access them. For a detailed explanation of each attribute, see the
Documentum Content Server Object Reference Manual. Note that other Docbase
objects, such as dm_group and dm_policy, possess additional computed
attributes not discussed here.

The table assumes an object named sObj has been instantiated as an
IDfSysObject. A few of these attributes are repeating and, therefore, the DFC
methods required to access them use an index to indicate which repeating value to
retrieve. In these cases, the table will show the method name followed by (i) to
indicate an index value is required. Chapter 8, Putting It All Together in a Sample
Application, contains source code that demonstrates accessing and using these
attributes.

Table 7.3 - Computed Attributes

Computed Attribute Name Accessor Method
_accessor_name sObj.getAccessorName(i)
_accessor_permit sObj.getAccessorPermit(i)
_accessor_xpermit sObj.getAccessorXPermit(i)
_accessor_xpermit_names sObj.getAccessorXPermitNames

(i)
_acl_ref_valid sObj.getAclRefValid()
_alias_set sObj.getAliasSet()
_allow_change_location sObj.getBoolean("_allow_

change_ location")
_allow_change_permit sObj.getBoolean("_allow_

change_ permit")
_allow_change_state sObj.getBoolean("_allow_

change_ state")
_allow_execute_proc sObj.getBoolean("_allow_

execute_ proc")

Chapter 7 – Tips, Tools and Handy Information

321

Computed Attribute Name Accessor Method
_allow_change_owner sObj.getBoolean("_allow_

change_ owner")
_cached sObj.getBoolean("_cached")
_changed sObj.isDirty()
_componentID
 (if applicable)

sObj.getComponentId(i).
getId()

_containID
 (if applicable)

sObj.getContainId(i).getId()

_content_buffer (only applicable after a getContent()
API method call)

_content_state sObj.getContentState(i)
_count sObj.getAttrCount()
_current_state sObj.getCurrentState()
_docbase_id sObj.getObjectId.

getDocbaseId()
_dump (contains same info the dump() API

method provides)
_id sObj.getObjectId.toString()
_isnew sObj.isNew()
_isreplica sObj.isReplica()
_lengths dmAPIGet("get,c,<object id>,

_lengths[i]")
_masterdocbase sObj.getMasterDocbase()
_names dmAPIGet("get,c,<object id>,

_names[i]")
_permit sObj.getPermit()
_policy_name sObj.getPolicyName()
_repeating dmAPIGet("get,c,<object id>,

_repeating[i]")
_status sObj.getStatus()
_type_id sObj.getString("_type_id")
_type_name sObj.getTypeName()
_types dmAPIGet("get,c,<object id>,

_types[i]")
_typestring dmAPIGet("get,c,<object id>,

_typestring")

Chapter 7 – Tips, Tools and Handy Information

322

Computed Attribute Name Accessor Method
_values dmAPIGet("get,c,<object id>,

_values[i]")
_xpermit sObj.getXPermit(IDfSession.

getUser("").getUserName)
_xpermit_list sObj.getXPermitList
_xpermit_names sObj.getXPermitNames(

IDfSession.getUser("").
getUserName)

7.13 Format Types
Format type objects, dm_format, control the format of content in the Docbase
(e.g., Microsoft Word, text, JPG.). By default, Documentum defines more than
270 formats. These formats are listed in Table 7.4. You can easily add more
formats using the Documentum Administrator. See the Documentum Content
Server Administrator's Guide for more information.

Table 7.4 – Documentum Defined Format Objects

Object Name Description DOS
Extension

MIME Type

123w Lotus 1-2-3 r5 wk4 application/vnd.lotus-1-
2-3

a-law a-LAW Sound
acad AutoCAD

Drawing
dwg

aiff AIFF Sound audio/aiff
aiff-c AIFF-C Sound
amipro AMI

Professional
sam

as_applet AppleScript
application

as_droplet AppleScript
droppable
application

Chapter 7 – Tips, Tools and Handy Information

323

Object Name Description DOS
Extension

MIME Type

as_script AppleScript
compiled script

asp Active Server
Pages

asp text/asp

atd Auxiliary Tag
Data

atd text/plain

att XMetaL
Attribute Help
Strings

att text/plain

au u-LAW sound
audio Audio File au audio/basic
avi Video for

Windows
avi

binary Binary Data
bmp Bit Mapped

Image
bmp image/bmp

image/bmp
cals1 CALS 1 image mil
cals2 CALS 2 image ov
canvas Canvas drawing cvs
cfm Cold Fusion

Template File
(cfm)

cfm

cfml Cold Fusion
Template File
(cfml)

cfml

cgi Common
Gateway
Interface
Program

cgi application/cgi

cgm Computer
Graphics
Metafile

cgm image/cgm

chemdraw ChemDraw
drawing

class Java Class File class java/*

Chapter 7 – Tips, Tools and Handy Information

324

Object Name Description DOS
Extension

MIME Type

com COM.FORMAT
crtext Text Document

(Windows)
txt

css Cascading Style
Sheet Document

css text/css

ctm XMetaL
Customization
File

ctm text/xml

daf Documentum
Annotation File

daf

dca DCA Revisible
Form Text

rft

dec DEC -
Compiled DTD

dec application/x-epic-dec

dib DIB image
(Windows)

dib

digital Digital DX
displaywrite DisplayWrite
dm_fulltext_copy Copy for

fulltext indexing

dm_internal Documentum
Internal

dm_print_copy Copy for
printing

doc Interleaf 3.x doc
dtd DTD File dtd text/dtd
dwf AutoCAD Web

Format
dwf

dxf AutoCAD DXF dxf
ebdic EBCDIC
elm XML

Supporting
Document

elm

enable Enable
ent XML Entity

File(ent)
ent text/xml

Chapter 7 – Tips, Tools and Handy Information

325

Object Name Description DOS
Extension

MIME Type

eps Encapsulated
PostScript

eps

excel Excel 3.x
worksheet

xls application/vnd.ms-excel

excel2sheet Excel 2.x
worksheet

xls application/vnd.ms-excel

excel4book Excel 4.x
workbook

xlw application/vnd.ms-excel

excel4sheet Excel 4.x
worksheet

xls application/vnd.ms-excel

excel5book Excel workbook
5.0

xls application/vnd.ms-excel

excel8book Excel 97 / 2000
workbook

xls application/vnd.ms-excel

excel8template Excel 97 / 2000
template

xlt application/vnd.ms-excel

filemaker2 FileMaker II
filemakerpro FileMaker Pro fm
filemakerpro3 FileMaker Pro

3.0
fp3

filemakerpro4 FileMaker Pro
4.0

fp4

finalform Final Form text
flash Flash File fla application/x-flash
fos FOSI -

Formatting
Output
Specification
Instance

fos

framework FrameWork
freehand1image FreeHand 1.0

image

freehand1template FreeHand 1.0
template

freehand2image FreeHand 2.0
image

Chapter 7 – Tips, Tools and Handy Information

326

Object Name Description DOS
Extension

MIME Type

freehand2template FreeHand 2.0
template

freehand3image FreeHand 3.x
image

freelance Freelance
presentation

pre application/vnd.lotus-
freelance

fssd SoundEdit
sound

fullwrite FullWrite 1.1
gem GEM drawing
gif GIF image gif image/gif
hcom Hcom Sound

(MacOS)

hdml Handheld
Device Markup
Language
Document

hdml text/hdml

helix_express Helix Express
database

hhf XMetaL Form
File

hhf application/octet-stream

hpgl HP Graphics
Language

hpuxshrlib HP-UX Shared
Library

sl

html HTML
Document

htm text/html

hypercard HyperCard
stack

i1 Interleaf
Publisher 1.1

i5 Interleaf
Publisher 5.0

iaf Interleaf 5
ASCII Format

Chapter 7 – Tips, Tools and Handy Information

327

Object Name Description DOS
Extension

MIME Type

ibmshrlib IBM-AIX
Shared Library

so

iges IGES drawing
illustrator Illustrator 3.0

image
ai

illustrator1 Illustrator 1.x
image

illustrator5 Illustrator 5.x
image

ai

illustrator88 Illustrator 88
image

image Image
imagemap Image Map File map
ip Interpress
iw Island Write
jar Java Archive

File
jar java/*

java Java Source File java text/java
jhtml Java within

Hypertext
Markup
Language
Document

jhtml text/jhtml

jpeg JPEG Image jpg image/jpeg
js JavaScript File js text/js
jsp Java Server

Pages
jsp application/x-javascript

legacy Legacy
lotmanu Lotus

Manuscript 2.0
 2.1

lotus 1-2-3 r3.0 application/vnd.lotus-1-
2-3

macdraw MacDraw
drawing

macdrawp MacDraw Pro
drawing

Chapter 7 – Tips, Tools and Handy Information

328

Object Name Description DOS
Extension

MIME Type

macp MacPaint image
macproject MacProject 1.x
macproject2 MacProject 2.x
mactext Text Document

(MacOS)
txt

macwrite MacWrite 4.5-
5.0

macwrite2 MacWrite II
macwritepro MacWrite Pro
maker FrameMaker -

internal format
fm

maker51 FrameMaker 5.1
- internal format

fm

maker55 FrameMaker 5.5
- internal format

fm

man UNIX man page
mass11 MASS 11 8.x
mbook FrameMaker -

book
bk application/vnd.framema

ker
mbook51 FrameMaker 5.1

book
bk application/vnd.framema

ker
mbook55 FrameMaker 5.5

book
bk application/vnd.framema

ker
mcr XMetaL Macro

File
mcr text/xml

mdoc FrameMaker -
document

fm application/vnd.framema
ker

mdoc51 FrameMaker 5.1
document

fm application/vnd.framema
ker

mdoc55 FrameMaker 5.5
document

fm application/vnd.framema
ker

mif FrameMaker -
MIF

mif application/vnd.mif

mif51 FrameMaker 5.1
MIF

mif application/vnd.mif

Chapter 7 – Tips, Tools and Handy Information

329

Object Name Description DOS
Extension

MIME Type

mif55 FrameMaker 5.5
MIF

mif application/vnd.mif

mmdwt Macromedia
Template File

dwt

mml FrameMaker -
MML

mml51 FrameMaker 5.1
- MML

mml55 FrameMaker 5.5
MML

mmlbi Macromedia
Library File

lbi

mod MOD sound
(Amiga)

mod

mp3 MP3 File mp3 audio/x-mpeg
mpeg MPEG Video

File
mpg video/x-mpeg

ms_access Access 1.x or
2.0 database

mdb

ms_access7 Access 95
database

mdb

ms_access8 Access 97 /
2000 database

mdb

ms_access8_mde Access 97 /
2000 MDE
database

mde

msproject MS Project -
project

mpp application/vnd.ms-
project

msproject_calendar MS Project -
calendar

mpc

msproject_view MS Project -
view

mpv

msw Word 4.x doc application/msword
msw3 Word 3.0-4.x doc application/msword
msw6 Word 6.0 doc application/msword

Chapter 7 – Tips, Tools and Handy Information

330

Object Name Description DOS
Extension

MIME Type

msw6template Word 6.x
template

dot application/msword

msw8 Word 97 / 2000
document

doc application/msword

msw8template Word 97 / 2000
template

dot application/msword

mswm Word 4.x doc application/msword
mswm1 Word 1.x

(MacOS)
 application/msword

msww Word 1.x doc application/msword
multimate MultiMate 4.x
navydif Navy DIF
officewrite OfficeWriter 4.0
pagemaker PageMaker 5.x

publication
pm6

pagemaker1pub PageMaker 1.x
publication

pagemaker2pub PageMaker 2.x
publication

pagemaker3pub PageMaker 3.x
publication

pagemaker3template PageMaker 3.x
template

pagemaker4pub PageMaker 4.x
publication

pagemaker4template PageMaker 4.x
template

pagemaker5template PageMaker 5.x
template

paradox Paradox 3.5 4.0
pbm Portable Bitmap
pcl HP LaserJet

series II
pcl

pcx PC Paint image
(Windows)

pcx

pdf Acrobat PDF pdf application/pdf

Chapter 7 – Tips, Tools and Handy Information

331

Object Name Description DOS
Extension

MIME Type

pdftext Acrobat PDF
Text

peachtext PeachText 5000
v2.1

pen XML Entity
File(pen)

pen text/xml

persuasion Persuasion
photoshop Photoshop 2.0

image

photoshop3 Photoshop 2.5 3.0
image

php PHP Script File php text/php
php3 PHP within

Hypertext
Markup
Language
Document
(php3)

php3 text/php3

phtml PHP within
Hypertext
Markup
Language
Document
(phtml)

phtml text/phtml

pict PICT image
(MacOS)

pct

png PNG Image png image/png
powerpoint PowerPoint pre-

3.0
ppt application/vnd.ms-

powerpoint
ppt8 PowerPoint 97 /

2000
presentation

ppt application/vnd.ms-
powerpoint

ppt8_template PowerPoint 97 /
2000 template

pot application/vnd.ms-
powerpoint

ppt_mac3 PowerPoint 3.x
(MacOS)

ppt application/vnd.ms-
powerpoint

Chapter 7 – Tips, Tools and Handy Information

332

Object Name Description DOS
Extension

MIME Type

ppt_mac4 PowerPoint 4.x
(MacOS)

ppt application/vnd.ms-
powerpoint

ppt_win3 PowerPoint 3.x
(Windows)

ppt application/vnd.ms-
powerpoint

ppt_win4 PowerPoint 4.x
(Windows)

ppt application/vnd.ms-
powerpoint

ppt_win7 PowerPoint 7.0
(Windows)

ppt application/vnd.ms-
powerpoint

pro PRO -
Compiled DTD

pro application/x-epic-pro

prowrite Professional
Write 1.0

ps PostScript ps application/postscript
ptcasm Pro/Engineer

Assembly
asm

ptcdrw Pro/Engineer
Drawing

drw

ptcprt Pro/Engineer
Part

prt

ptd PTD - Compiled
DTD

ptd application/x-epic-ptd

pub_html Published
HTML
Document

htm text/html

q&a Q&A Write
quark Quark Express

(MacOS)

quattropro Quattro Pro 4.0
quattroprow Quattro Pro 1.0

(Windows)

quicktime QuickTime
Movie

mov video/quicktime

ra RealAudio Clip
File

ra audio/vnd.rn-realaudio

ram RealPlayer File
(ram)

ram audio/x-pn-realaudio

Chapter 7 – Tips, Tools and Handy Information

333

Object Name Description DOS
Extension

MIME Type

rapid Rapid File
ras Sun Raster

Image (RAS)
ras

rls XMetaL
Compiled
SGML DTD
File

rls application/octet-stream

rlx XMetaL
Compiled XML
DTD File

rlx application/octet-stream

rm RealMedia File rm audio/vnd.rn-realmedia
rmm RealPlayer File

(rmm)
rmm audio/x-pn-realaudio

rnx RealPlayer File
(rnx)

rnx audio/vnd.rn-realplayer

rtf Rich Text
Format (RTF)

rtf application/msword

rv RealVideo Clip
File

rv audio/vnd.rn-realvideo

samna Samna Word IV
(Plus)

scam ScreenCam
movie

scm application/vnd.lotus-
screencam

sgml SGML text sgm text/sgml
shtml Server Parsed

HTML
Document
(shtml)

shtml text/shtml

snd Macintosh
Sound

soc OASIS Catalog soc text/plain
span Kurzweil

OCR/SPAN

spl Shockwave
Flash File (spl)

spl application/futuresplash

Chapter 7 – Tips, Tools and Handy Information

334

Object Name Description DOS
Extension

MIME Type

spml Server Parsed
HTML
Document
(spml)

spml text/spml

ste Scriptable Text
Editor (MacOS)

stm Server Parsed
HTML
Document (stm)

stm text/stm

sun Sun Raster
Image (Sun)

sun

sunshrlib Solaris Shared
Library

so

swf Shockwave
Flash File (swf)

swf application/x-
shockwave-flash

tbr XMetaL
Toolbar and
Menu File

tbr text/xml

teachtextro Teach Text
(read only)

txt

tex TeX
Composition

text Text Document
(Unix)

txt text/plain

tiff TIFF Image tif image/tiff
totalword Total Word 1.2
troff Troff
u-law u-LAW sound

(au)
au

unknown Unknown
ustn MicroStation dgn application/x-

microstation
vbbas Visual Basic -

source
bas

vbfrm Visual Basic -
form

frm

Chapter 7 – Tips, Tools and Handy Information

335

Object Name Description DOS
Extension

MIME Type

vbmak Visual Basic -
make

mak

ventura Ventura 2.0
voc VOC sound

(Windows)
voc

volkswrite VolksWriter
vrf Virtual

Resource File
vrf

vsd1 Visio 1 drawing vsd application/vnd.visio
vsd2 Visio 2 drawing vsd application/vnd.visio
vsd3 Visio 3 drawing vsd application/vnd.visio
vsd4 Visio 4 drawing vsd application/vnd.visio
wangpc Wang PC 3.0
wave Windows Sound wav audio/wav
win32shrlib Windows

Shared Library
dll

winwrite MS Write 3.0 wri
wmf Windows

Metafile image
wmf

wordstar Wordstar
wordstar2000 Wordstar 2000

3.0

wp WordPerfect 4.x
(DOS)

wp5 WordPerfect 5.x wpd application/wordperfect5
.1

wp6 WordPerfect 6.0 wpd
wp7 WordPerfect 7.0 wpd
wp8 WordPerfect 8.0 wpd
wpmac WordPerfect 2.x

(MacOS)

wpmac1 WordPerfect 1.x
(MacOS)

wpmac3 WordPerfect 3.x
(MacOS)

wps+ WPS-PLUS

Chapter 7 – Tips, Tools and Handy Information

336

Object Name Description DOS
Extension

MIME Type

wpw WordPerfect 5.1
writeassit IBM Writing

Assistant 1.0

writenow WriteNow 3.0
(MacOS)

wrl VRML File wrl model/vrml
xbm X Bitmap

(Unix)
 image/xbm

xml XML Document xml text/xml
xsd XML Schema xsd
xsl XSL File xsl text/xsl
xwd X-Windows

screen dump
(Unix)

xywrite XyWrite
zip Zip File zip application/x-zip-

compressed
zip_html Zipped HTML

Files
zip application/x-zip-

compressed
zip_pub_html Zipped &

Published
HTML
Document

zip application/x-zip-
compressed

To determine which formats are defined in your Docbase, you can use the
following query:

select name, description, dos_extension, mime_type from
 dm_format;

7.14 Object Permissions
Documentum provides seven levels of object permissions, or security, as
described in Table 7.5. These permissions control user access to objects, and are
hierarchical, meaning that each permission includes the access capabilities of the

Chapter 7 – Tips, Tools and Handy Information

337

permission above it. For example, if a user possesses Write permission (6) on
an object, he also possesses Version, Relate, Read, and Browse
permission.

Docbase objects also possess extended permission that are expressed as strings,
and are not hierarchical in nature. The extended permissions are described in
Table 7.6.

Table 7.5 - Documentum Base Object Permissions

Value Permission
Name

Description

1 None No access. You don't even know these objects
exist.

2 Browse You can see the objects and read their attributes,
but not their content.

3 Read You can read attribute data and the content of
these objects.

4 Relate You can attach an annotation or workflow to these
objects.

5 Version You can create a new version of these objects.
6 Write You can update these objects and save them as the

same version.
7 Delete You can destroy these objects.

Table 7.6 - Documentum Extended Object Permissions

Permission Name Description
Change State You can change the document lifecycle state (business

policy) of the object.
Change Permission You can change the base permissions of the object.
Change Owner You can change the owner of the object.
Execute Procedure You can execute (i.e., run) the object, assuming it is an

executable object (e.g., a procedure or workflow
method). Users that have at least Browse (1) permission
on the object automatically have Execute Procedure
permission also.

Chapter 7 – Tips, Tools and Handy Information

338

Permission Name Description
Change Location You can move an object from one folder to another.

Users that have at least Browse (1) permission on the
object automatically have Change Location permission
also.

Both base and extended permissions are bound to objects via Access Control List
(ACL) objects (dm_acl).

7.15 Registered Table Permissions
Documentum provides five levels of access for registered tables, as described in
Table 7.7. These permissions apply to the underlying RDBMS tables and not the
registered table objects (i.e., these permissions pertain to the
world_table_permit, group_table_permit, and owner_table_
permit attributes). Unlike object permissions, registered table permissions are
additive and not hierarchical. This means an access level does not assume the
permissions of the levels above it. Rather, they are a summation of all granted
permissions. For example, a user with Insert permission (4) does not have
Update permission (2). To assign a user Insert and Update permission, the
user must have an access level of 6 (4+2).

Table 7.7 - Documentum Registered Table Permissions

Value Permission
Name

Description

0 None No access.
1 Select You can select data from these tables.
2 Update You can update data in these tables.
4 Insert You can insert new rows into these tables.
8 Delete You can delete rows from these tables.

When working with registered tables, it is important to understand the difference
between object permissions and table permissions. This difference was discussed
in Chapter 3, Working with Queries and Collections.

Chapter 7 – Tips, Tools and Handy Information

339

7.16 Verity KeyView File Filters
The Verity full-text search engine embedded in the Content Server employs
KeyView file filters to read a variety of common file formats. The file formats
readable by the KeyView 7.0 file filters are listed in Table 7.8.

Table 7.8 – KeyView 7.2 File Filters

Word Processing Formats
Adobe Maker
Interchange Format
(MIF) 5.0, 5.5, 6.0, 7.0

Applix Words 4.2, 4.3,
4.4

ANSI Text 7 and 8-bit

ASCII Text 7 and 8-bit Display Write 4.0 Folio Flat File 3.1
HTML 1.x, 2.x, 3.x IBM DCA/RFT SC23-

0758-1
JustSystems Ichitaro 8.0,
9.0, 10.0, 12.0

Lotus AMI Pro through
3.1

Lotus Word Pro 96
through Millennium
Edition 9.6

Microsoft Word through
6.0

Microsoft Word for
Macintosh 4.0 through
98

Microsoft Word Pad Microsoft Works for
Windows through 4.0

Microsoft Works for
Windows through 6.0
(text only)

Microsoft Write 1.0
through 3.0

WordPerfect for DOS
through 6.1

WordPerfect for
Macintosh 1.02 through
3.1

WordPerfect for
Windows 5.0, 6.0, 7.0,
8.0 and 10.0

Oasys 7.0 (text only)

WordPerfect for Linux
6.0

Unicode Text XyWrite 4.12

Presentation Formats
Adobe Portable
Document Format
(PDF) 1.1 through 1.4

Applix Presents 4.3, 4.4 Corel/Novell
Presentations 7.0, 9.0,
10.0, 11.0 and 2002

Freelance for Windows
through Millennium
Edition 9.6

Microsoft PowerPoint for
Windows 4.0 through
2002

Microsoft PowerPoint for
Macintosh 98

Spreadsheet Formats

Chapter 7 – Tips, Tools and Handy Information

340

Applix Spreadsheets
4.2, 4.3, 4.4

Comma Separated
Values (CSV)

Quattro Pro for Windows
through 8.0

Lotus 1-2-3 through 5.0 Lotus 1-2-3 for
SmartSuite 96 and later

Lotus 1-2-3 Charts
through 5.0

Microsoft Excel for
Windows 3.0 through
2002

Microsoft Excel Charts
2.x through 7.0

Microsoft Excel for
Macintosh 98

Microsoft Works
Spreadsheet 1.0 through
4.0

7.17 Menu Command State Flags
Menu command state flags are set on the Behavior tab of the Menu System
Designer Tool, and are used to control when menu options are enabled. The
menu command state flags were first mentioned in Chapter 2, Getting Started
with Applications and Components. Table 7.9 describes the command state flags.

Table 7.9 - Menu Command State Flags

Flag Explanation
DC_CSF_ALWAYS = DC_CSF_FIRST Always.
DC_CSF_ANYTHING Anything is selected.
DC_CSF_CHECKED_OUT_SELF Selected item is checked

out by the current user.
DC_CSF_CLIPBOARD Clipboard contains data

that can be pasted.
DC_CSF_CLIPBOARD_DIFFERENT_DOCBASE Clipboard contains an

object from a different
Docbase.

DC_CSF_CLIPBOARD_SAME_DOCBASE Clipboard contains an
object from the same
Docbase.

Chapter 7 – Tips, Tools and Handy Information

341

Flag Explanation
DC_CSF_EDIT Selected item has content

and is not checked out by
someone else.

DC_CSF_FROZEN_ASSEMBLY Selected item is associated
with a frozen assembly.

DC_CSF_HAS_CONTENT Selected item is a
dm_sysobject with
content.

DC_CSF_MAKE_PLAIN Selected item may be made
into a plain document.

DC_CSF_MAKE_VIRTUAL Selected item may be made
into a virtual document.

DC_CSF_NEVER Never.
DC_CSF_NOT_CHECKED_OUT Selected item is a document

that is not checked out.
DC_CSF_UNFROZEN_ASSEMBLY Selected item is associated

with an unfrozen assembly.
DC_CSF_VIEW. Selected item is available

for viewing.
DC_CSF_VIRTUAL_DOCUMENT Selected item is a virtual

document.
C_SHELL_CSF_COMPLETED_UNACQUIRED_
ROUTER = DC_SHELL_CSF_FIRST

Container or the selected
item is a completed but
unacquired router.

DC_SHELL_CSF_CONNECTED User is connected to any
Docbase.

DC_SHELL_CSF_CONNECTED_DOCBASE Container or selected item
is a connected Docbase.

DC_SHELL_CSF_CONNECTED_LOGIN_ITEM Container or selected item
is a Docbase, the Inbox, or
My Cabinet.

DC_SHELL_CSF_DELETE Selected item can be
deleted.

DC_SHELL_CSF_DOCBASE Container or selected item
is a Docbase (not
necessarily connected).

Chapter 7 – Tips, Tools and Handy Information

342

Flag Explanation
DC_SHELL_CSF_DOCUMENT Selected item is a

document.
DC_SHELL_CSF_FOLDER Container or selected item

is a folder or cabinet.
DC_SHELL_CSF_INCOMPLETE_ROUTER Container or selected item

is an incomplete router.
DC_SHELL_CSF_INCOMPLETE_TASK Container or selected item

is an incomplete router or
work item.

DC_SHELL_CSF_INCOMPLETE_WORK_ITEM. Container or selected item
is an incomplete work item.

DC_SHELL_CSF_LOCAL_COPY Selected item is a Local
Copy item in the Local
Files container.

DC_SHELL_CSF_LOGIN_ITEM Container or selected item
is a Docbase, the Inbox or
My Cabinet (not
necessarily connected).

DC_SHELL_CSF_NON_RUNNING_ROUTER Selected item is a non-
running router.

DC_SHELL_CSF_SYSOBJECT Selected item is a
dm_sysobject.

DC_SHELL_CSF_UNACQUIRED_ROUTER Container or selected item
is an unacquired router.

DC_SHELL_CSF_UNACQUIRED_TASK Container or selected item
is an unacquired router or
work item.

DC_SHELL_CSF_UNLINK Selected item is a
dm_sysobject in a
Docbase, cabinet or folder.

DC_VDM_CSF_ADD_CHILD = DC_VDM_
CSF_FIRST

Selected item can have a
child added to it in the
virtual document structure.

DC_VDM_CSF_CLIPBOARD_DRAGDROP Clipboard contains data
that can be pasted or a
drag-drop operation is
occurring.

Chapter 7 – Tips, Tools and Handy Information

343

Flag Explanation
DC_VDM_CSF_COPY_BEHAVIOR Selected item is not the root

of the virtual document and
not a component in an
assembly.

DC_VDM_CSF_MDI_CHILD_OPEN MDI Child window is open in
the VDM editor.

DC_VDM_CSF_NOT_ASSEMBLY_ COMPONENT Selected item is not a
component in an assembly
but can be the root.

DC_VDM_CSF_NOT_ASSEMBLY_ROOT Selected item is not the root
of an assembly.

DC_VDM_CSF_NOT_CDM_CHILD Selected item is not a child
of a compound document.

DC_VDM_CSF_NOT_CDM_PARENT Selected item is not a
parent of a compound
document.

DC_VDM_CSF_NOT_ROOT Selected item is not the root
of the virtual document.

DC_VDM_CSF_PASTE_CLIPBOARD Clipboard contains data
that can be pasted and the
target is not a compound
document.

DC_VDM_CSF_PASTE_CLIPBOARD_
DRAGDROP

Clipboard contains data
that can be pasted or a
drag-drop operation is
occurring and the target is
not a compound document.

DC_VDM_CSF_PASTE_SPECIAL Selected item is available
for the paste special
operation.

DC_VDM_CSF_REMOVE Selected item can be
removed from the virtual
document structure.

DC_VDM_CSF_USE_ASSEMBLY Selected item is available
for the use assembly
operation.

Chapter 7 – Tips, Tools and Handy Information

344

Flag Explanation
DC_VDM_CSF_VDM_DIRTY Virtual document has been

changed.
DC_VDM_CSF_VDM_ROOT Selected item is the root of

the virtual document.

7.18 Uninstalling DocApps
DocApps are a terrific feature of Documentum, but if you ever mess one up and
need to permanently remove it, you’ll discover they are not easily uninstalled.
The reason is, once a DocApp has been installed, there are potentially hundreds of
other objects in the Docbase that could be using or referencing it or one of its
components. Brute force deleting it could render your Docbase inoperable;
therefore, the server will probably not let you simply delete it.

Although the Documentum Application Builder does not have an uninstall
function for DocApps, there is a method for removing them. However, the safest
way to remove a DocApp from a Docbase is to simply disable it by setting its
ACL to one in which no one can access it.

The following steps* can be used to successfully remove a DocApp from a
Docbase. Use this procedure at your own risk!

1. Using DQL, or whatever means works best for you, delete all the objects
from the Docbase that are of types defined in the DocApp. For example,
if you had an object type named regional_doc, you would want to
delete all instances of regional_doc objects from the Docbase (this
includes all versions and renditions). For example:

delete regional_doc (all) objects;

2. If any of the objects mentioned in step 1 have indexes on their attributes,

these indexes need to be deleted. See DROP_INDEX in the Documentum
Content Server Fundamentals manual for details on dropping indexes.

* Based on Documentum Support Note #5908.

Chapter 7 – Tips, Tools and Handy Information

345

3. Because all STRING attributes are put in the full-text index automatically,
the full-text index also needs to be cleared. This can be easily
accomplished from the Documentum Administrator.

4. If necessary, uninstall any applicable workflow templates using the
Workflow Manager.

5. Start Documentum Application Builder and open the DocApp.
6. Select objects (other than custom types), and click Delete object from

Docbase in the Edit menu. For example, delete ACX forms, and
lifecycles.

7. Delete custom types from the DocApp, by selecting them, right-clicking,
and choosing Remove selected object from DocApp/Type from the
context menu.

8. Checkin this version of the DocApp as the same version.
9. Close Documentum Application Builder.
10. Using the Documentum Desktop, navigate to the

/System/Applications/<DocApp Name> folder where
<DocApp Name> is the actual name of the DocApp.

11. Delete the DocApp virtual document (), but not its children. The
children could be in use by other DocApps.

12. If there are no other objects in this folder, or you are certain about the
disposition of the objects that remain, you can delete the DocApp’s folder.

13. Finally, delete the DocApp’s alias set. You can do this with a simple DQL
query:

delete dm_alias_set object where object_name =
 '<DocApp Name>';

where <DocApp Name> is the actual name of the DocApp.

The DocApp now is effectively deleted.

7.19 Server Error Files
All the error messages generated by the Content Server can be found in a set of
text files on the server. These are the messages that appear in the DcReporter
when exceptions occur, or are returned by the getmessage() API method.

Chapter 7 – Tips, Tools and Handy Information

346

The files reside in the %DM_HOME%\messages directory and are listed in Table
7.10.

The files divide the error messages by “facility,” such as ACL, group, or event.
Their names are reasonably obvious. Each file is further divided by the severity
of the error message. The five severity levels are:

• FATAL–an error the user has no control over.
• ERROR–an error due to something the user did.
• TRACE–messages output when tracing is in effect.
• WARNING–warning messages.
• INFORMATION–informational messages.

Each error message contains the following elements:

• Error String–composed of the error name in all caps, followed by the
explanation.

• CAUSE–what caused the error.
• ACTION–contains what might be the most important part of the message:

how to remedy the error. (This value is not output as part of the error
message by the server.)

• PARAMETERS–an explanation of the values substituted into the Error
String when it is output.

Table 7.10 - Server Error Files

File Name Purpose
dmacl.e Errors messages returned by the DM_ACL facility (dmACL

class).
dmapi.e Errors messages returned by the DM_API facility (client API

tracing).
dmassmbl.e Errors messages returned by the DM_ASSEMBLY facility

(dmAssembly class).
dmaudit.e Errors messages returned by the DM_AUDITTRAIL facility .
dmbroker.e Errors messages returned by the DM_DOCBROKER facility.
dmcab.e Error messages returned by the DM_CABINET facility

(dmCabinet).

Chapter 7 – Tips, Tools and Handy Information

347

File Name Purpose
dmccont.e Error messages returned by the DM_CCONTENT facility

(Common Content Area).
dmchtran.e Error messages returned by the DM_CHARTRANS facility.
dmcntain.e Error messages returned by the DM_CONTAINMENT facility

(dmContainment class).
dmcompos.e Error messages returned by the DM_COMPOSITE facility

(dmComposite class).
dmcont.e Error messages returned by the DM_CONTENT facility .
dmcrypto.e Error messages returned by the DM_CRYPTO facility.
dmddict.e Error messages returned by the DM_DATA_DICT facility

(Data Dictionary).
dmdir.e Error messages returned by the DM_DIRECTORY facility.
dmdoc.e Error messages returned by the DM_DOCUMENT facility

(dmDocument class).
dmdoccnf.e Error messages returned by the DM_DCNFG facility

(dmDocbaseConfig class).
dmdump.e Error messages returned by the DM_DUMP facility (dmDump

class).
dmesign.e Error messages returned by the DM_SIGN facility (Electronic

Signature).
dmevent.e Error messages returned by the DM_EVENT facility (dmInbox

class).
dmexcept.e Error messages returned by the DM_EXCEPTION facility.
dmexpr.e Error messages returned by the DM_EXPRESSION facility.
dmfilter.e Error messages returned by the DM_FILTER facility (dmFilter

class).
dmfolder.e Error messages returned by the DM_FOLDER facility

(dmFolder class).
dmforgn.e Error messages returned by the DM_FOREIGN facility

(dmDocbaseIdMap class).
dmformat.e Error messages returned by the DM_FORMAT facility.
dmftindx.e Error messages returned by the DM_FT_INDEX facility (Full-

text index management).
dmfull.e Error messages returned by the DM_FULLTEXT facility.
dmgroup.e Error messages returned by the DM_GROUP (dmGroup class).
dmiditr.e Error messages returned by the DM_ITDR facility (SQL

iterator).

Chapter 7 – Tips, Tools and Handy Information

348

File Name Purpose
dminbox.e Error messages returned by the DM_INBOX facility (dmInbox

class).
dminfo.e Error messages returned by the DM_INFO facility.
dmintern.e Error messages returned by the DM_INTERNAL facility.
dmload.e Error messages returned by the DM_LOAD facility (dmLoad

class).
dmlocale.e Error messages returned by the DM_LOCALE facility (client

local date format).
dmlocatn.e Error messages returned by the DM_LOCATION facility.
dmmethod.e Error messages returned by the DM_METHOD facility

(dmNote class).
dmmtpt.e Error messages returned by the DM_MTPT facility (mount

point).
dmnote.e Error messages returned by the DM_NOTE facility (dmNote

class).
dmobject.e Error messages returned by the DM_OBJECT facility

(dmObject class).
dmoutdev.e Error messages returned by the DM_OUTPUTDEVICE (output

devices).
dmpart.e Error messages returned by the DM_VERITY_COLL (fulltext

partition management).
dmplat.e Error messages returned by the DM_PLATFORM facility.
dmpolicy.e Error messages returned by the DM_POLICY facility

(dmPolicy class).
dmpom.e Error messages returned by the DM_OBJ_MGR

(dmObjectManager class).
dmptm.e Error messages returned by the DM_TYPE_MGR

(dmTypeManager class).
dmquery.e Error messages returned by the DM_QUERY facility.
dmquery2.e Error messages returned by the DM_QUERY facility

(continued due to limit of 256 messages per severity per
facility).

dmrecov.e Error messages returned by the DM_RECOVERY facility
(recovery subsytem).

dmrelate.e Error messages returned by the DM_RELATION (dmRelation
class)

Chapter 7 – Tips, Tools and Handy Information

349

File Name Purpose
dmrelatp.e Error messages returned by the DM_RELTYPE facility

(dmRelation_type class).
dmrouter.e Error messages returned by the DM_ROUTER facility

(dmRouter class).
dmserver.e Error messages returned by the DM_SERVER facility (generic

server messages).
dmsess.e Error messages returned by the DM_SESSION facility

(dmSession class).
dmsql.e Error messages returned by the SQL_TRACE facility.
dmsrvcnf.e Error messages returned by the DM_SCNFG (dmServerConfig

class).
dmstor.e Error messages returned by the DM_STORAGE facility

(storage errors).
dmsysobj.e Error messages returned by theDM_SYSOBJECT facility

(dmSysObject class).
dmupgmgr.e Error messages returned by the DM_UPGRADE_MGR facility.
dmuser.e Error messages returned by the DM_USER facility (dmUser

and dmGroup classes).
dmvrsion.e Error messages returned by the DM_VERSION facility.
dmwflow.e Error messages returned by the DM_WORKFLOW facility

(workflow errors).
dmxfrm.e Error messages returned by the DM_XFRM facility (XML

transformations).

Documentum provides an interactive utility to read these files: dm_error.bat.
The dm_error.bat utility is found in the %DM_HOME%\bin directory. To use
the utility, execute it from a command line with the following syntax form:

dm_error <error_string>

where <error_string> is an error string returned by the Content Server.

For example:

dm_error READONLY_ATTR

dm_error.bat responds with:

Chapter 7 – Tips, Tools and Handy Information

350

dmacl.e:
[DM_ACL_E_READONLY_ATTR]
 "The attribute '%s' of the ACL '%s' is read-only and
 not chngable."
CAUSE: Try to change read-only attrs.

7.20 Anatomy Of The server.ini File
The server.ini file contains configuration information for a Docbase. Each
Docbase has a configuration file located at
%DOCUMENTUM%\dba\config\<Docbase Name>, where <Docbase
Name> is the name of the Docbase. This file controls a variety of features that
affect your Docbase, and is read every time the Docbase starts. The following
discussion highlights some of the more commonly used features controlled by this
file.

7.20.1 Enforce a Four Digit Year

The server will force the display and storage of four digit years if this option is
enabled. By default, this option is disabled.

[SERVER_STARTUP]
enforce_four_digit_year = T

7.20.2 Client Session Timeout Period

The amount of time the server waits to hear from a client session before it
disconnects the session is configurable. By default, the period is 5 minutes. The
higher this value is, the longer the server will wait. This can be advantageous on
a high-latency network; however, care should be taken when adjusting this value.
If the value is too high, the server consumes valuable resources maintaining
unnecessary sessions.

[SERVER_STARTUP]
client_session_timeout = 5

Chapter 7 – Tips, Tools and Handy Information

351

7.20.3 Concurrent Sessions

By default, the server is configured to handle 20 concurrent sessions. These
sessions include not only user sessions, but sessions required by jobs, methods,
and queries too. Care should be taken when adjusting this value. Too many
concurrent sessions can degrade performance, but so can too few. The maximum
concurrent sessions allowed is 1024.

[SERVER_STARTUP]
concurrent_sessions = 20

7.20.4 Login Ticket Timeout Period

A login ticket's lifetime is 5 minutes from the time it was generated. After that
time period the ticket is invalid. This lifetime can be adjusted using this option.

[SERVER_STARTUP]
login_ticket_timeout = 5

7.20.5 Mail Notification

This option controls whether an email message is sent to a user when a workitem
or message is queued to their inbox. This option is on by default.

[SERVER_STARTUP]
mail_notification = T

7.20.6 User Authentication Case

You can force the server to convert a user's name to upper or lowercase before
authenticating them. Valid values for this option are: upper, lower, and NULL.
The default is NULL meaning the server uses the user's name in whatever case it
was entered.

[SERVER_STARTUP]
user_auth_case = NULL

Chapter 7 – Tips, Tools and Handy Information

352

7.20.7 Workflow Agent Sleep Interval

This option controls how frequently the workflow agent executes by indicating
the sleep period between runs. The workflow agent executes the automatic
activities in a workflow. The default sleep period is 60 seconds. A larger value
represents a longer period of time between executions. Setting this value too high
will unnecessarily prolong workflow activities. Setting this value too low can
cause activities to collide.

[SERVER_STARTUP]
wf_sleep_interval = 60

7.21 Chapter Summary
This chapter contained an eclectic collection of useful information, and virtually
no programming. Nonetheless, the topics covered here are topics frequently
asked about on discussion groups or tech support forums. Most of the tables
contained here can be found, or at least inferred, from the Documentum
documentation or the Docbase itself. However, it is much easier to find and use
them when they are all in a one location.

Chapter 8 – Putting It All Together In A Sample Application

353

8
8 Putting It All Together In A

Sample Application
In this final chapter, I will guide you through the construction of a simple, but
useful, application based entirely on code, concepts, and techniques discussed in
this book. The intent of this example is to demonstrate a few techniques within
the context of a working program rather than as isolated code snippets. I think it's
important to see how these concepts and techniques co-exist and interrelate.

I have limited the commentary in this chapter to portions of the code that are of
particular interest, are different from those presented previously, or are new and
need explanation. When a concept or technique is implemented in the code, I
reference the applicable section of the book to show you the practical
implementation of what you previously read. There is a cross-referenced
summary at the end of the chapter containing all of the concepts and techniques
used in this example, and the subroutines that implement them.

Chapter 8 – Putting It All Together In A Sample Application

354

8.1 dmSpy
The name of the application you are about to build is dmSpy. dmSpy is a
developer/admin tool that enables you to look under the hood of the Docbase to
see the inner workings of your objects, i.e., spy on them. For a selected object,
dmSpy will reveal all the object’s attributes, computed attributes, and locations,
including: the file system, the Docbase, virtual documents, and workflows. It also
provides a DQL query facility where you can enter queries and have the results
displayed in the tool.

To begin, create a new Visual Basic application as described in Chapter 2, Getting
Started with Applications and Components.

• Name your project dmSpy.
• Add a form to the project and name it frmSpy.
• Add a module to the project and name it mainSpy.
• Copy the frm_ObjectSelector.frm file created in Chapter 6,

Working with Screen Controls, into the dmSpy project directory, and add
it to the project*.

• Copy the DcSessionLock.cls file from the Documentum Desktop
Component Source archive** to the dmSpy directory, and add it to the
project.

Your dmSpy project should now consist of the files list in Table 8.1, and look
like Figure 8.1.

Make sure your project references the following type libraries:

• Visual Basic for Applications,
• Visual Basic Runtime Objects and Procedures,
• Visual Basic Objects and Procedures,
• OLE Automation,
• Documentum Foundation Classes Type Library,

* If your Object Selector dialog box acts erratically, double check the references and key values in the ImageList control.
You may need to repair these references and values after you copy it to a new directory.
** You can download the Documentum Desktop Component Source archive from the Documentum Download Center
(http://documentum.subscribenet.com).

Chapter 8 – Putting It All Together In A Sample Application

355

• Documentum Login Manager Type Library,
• Documentum Desktop Component Assistant Type Library,
• Documentum Report Manager Type Library,
• Documentum Desktop Utility Manager Type Library.

Table 8.1 - dmSpy File Descriptions

File Name Name Type Purpose
dmSpy.vbp dmSpy Project Contains all of

the
application’s
project
information.

frmSpy.frm frmSpy Form Contains the
application's
main form and
all of the code
to implement
the
functionality
behind each
screen control.

frm_ObjectSelector.frm FrmObject
Selector

Form The Object
Selector form
created in
Chapter 6,
Working with
Screen
Controls.

mainSpy.bas mainSpy Module Contains the
application’s
Main()
subroutine.

DcSessionLock.cls DcSessionLock Class
Module

Contains the
Documentum-
provided
session locking
class.

Chapter 8 – Putting It All Together In A Sample Application

356

Figure 8.1 - dmSpy Project in the Visual Basic Project Explorer

Add the following components to your project:

• Documentum Docbase-aware Controls,
• Microsoft Windows Common Controls 6.0,
• Microsoft Rich TextBox Control.

8.1.1 The Form

This section discusses the graphical composition of the frmSpy form. The
implementation of each control is described later in the chapter. The Object
Selector form was discussed in Chapter 6, Working with Screen Controls, and the
code for DcSessionLock.cls is proprietary Documentum code. These
classes will not be discussed here.

The main interface for dmSpy is the frmSpy form, and looks like Figure 8.2.
Table 8.2 describes each screen element.

Chapter 8 – Putting It All Together In A Sample Application

357

Figure 8.2 - Designer View of frmSpy Form

Table 8.2 - Form Elements

Name Type Caption Comment
btn_SelectObject Command

Button
Select
Object

This button opens the
Object Selector form
and allows the user to
select an object. It
could just as easily call
the Documentum Open
Dialog.

btn_Dump Command
Button

Dump
Attrs.

This button displays all
of the selected object’s
attributes.

Chapter 8 – Putting It All Together In A Sample Application

358

Name Type Caption Comment
btn_CompAttrDump Command

Button
Dump
Comp.
Attrs.

This button calculates
and displays the
selected object’s
computed attributes.
The list of computed
attributes and their
access methods were
discussed in Chapter 7,
Tips, Tools and Handy
Information.

btn_Location Command
Button

Locations This button displays the
selected object's
locations. These
locations include: the
file system, Docbase
paths, virtual
documents, and
workflows. These
paths are obtained
using queries discussed
in Chapter 3, Working
with Queries and
Collections.

btn_Query Command
Button

Run
Query

This button displays a
simple input dialog to
capture the user’s DQL
query. It then runs the
query and displays the
results in the
RichTextBox control.
This button uses
collection-processing
techniques discussed in
Chapter 3, Working
with Queries and
Collections.

Chapter 8 – Putting It All Together In A Sample Application

359

Name Type Caption Comment
btn_Exit Command

Button
Exit Quits dmSpy

rtx_output RichText
Box

 This is the
RichTextBox that holds
the results generated by
each button.

lbl_QueryTotal Label A label to hold the
number of objects
returned by a query. It
is only visible when the
Run Query button is
clicked. The
calculation of the size
of the result set uses a
technique discussed in
Chapter 3, Working
with Queries and
Collections.

lbl_ObjectId Label Label to hold the
selected object’s Id. It
is only visible when an
object is selected.

8.1.2 The Code

In this section, I discuss the code in the mainSpy.bas and frmSpy.frm files.
The mainSpy.bas file contains the startup logic necessary to login to the
Docbase and display the main interface. The frmSpy.frm file contains the
application's main interface, as well as implements the functionality behind each
screen control.

8.1.2.1 The mainSpy.bas Module

The code in the mainSpy.bas file is based upon the skeleton code for a
standalone Documentum application discussed in Chapter 2, Getting Started with
Applications and Components. In addition, it contains the declaration of the

Chapter 8 – Putting It All Together In A Sample Application

360

GetDesktopWindow() Win32 API function, the sleep() subroutine, and
the lockSession() function. The GetDesktopWindow() function is used
throughout the application to provide the DcReporter object with a valid window
handle. The MAX_RESULTS constant is used later by the
btn_Query_Click() subroutine to determine if too many query results will
be returned by the user's query.

Source Code A working example of this source code can be found in the
"Chapter8/dmSpy" directory of the source code archive.

Option Explicit

' Win32API declares
Public Declare Function GetDesktopWindow Lib "user32" () As Long

' DCTM globals
Public loginMgr As New DcLoginManager
Public r As New DcReport
Public Const MAX_RESULTS = 250

The Main() subroutine consists primarily of the Login Manager code as
discussed in Chapter 5, Proven Solutions to Common Tasks, and is essentially the
same code found in the skeleton Documentum application code in Chapter 2,
Getting Started with Applications and Components. The exception, of course, is
the declaration of the frm variable as frmSpy.

Sub Main()
 Dim sessionId As String
 Dim frm As New frmSpy

 ' if no session, login
 If (sessionId = "") Then
 sessionId = loginMgr.Connect("", "", "", "", 0)
 End If

 ' if no session, error out
 If (sessionId = "") Then
 MsgBox "Could not Log In.", vbCritical, _
 "Could Not Log In"
 Set loginMgr = Nothing
 End
 End If

Chapter 8 – Putting It All Together In A Sample Application

361

 ' pass sessionId to form
 frm.sessionId = sessionId

 ' show form
 frm.Show

 Set frm = Nothing

End Sub

The sleep() subroutine and the lockSession() function were discussed in
Chapter 5, Proven Solutions to Common Tasks, and are here for convenience.

Sub sleep(t As Integer)
 Dim EndTime As Date

 EndTime = DateAdd("s", t, Now)
 Do Until Now > EndTime
 DoEvents
 Loop

End Sub

Function lockSession(session As IDfSession, context As String) _
 As DcSessionLock

 Dim sessLock As New DcSessionLock
 Dim locked As Boolean

 locked = False

 ' Lock the session. Keep trying until successful
 While (locked = False)
 locked = sessLock.GetLock(session, False, context)
 If (locked = False) Then
 sleep (1)
 End If
 Wend

 Set lockSession = sessLock

End Function

Chapter 8 – Putting It All Together In A Sample Application

362

8.1.2.2 The frmSpy.frm Form

The frmSpy.frm file is where most of the application's logic and code reside.
The form implements all of the logic behind each of its controls, with the
exception of the Object Selector. The Object Selector is called from this form,
but its logic and code are contained in the frm_ObjectSelector.frm file.

Like the skeleton code discussed in Chapter 2, Getting Started with Applications
and Components, this form also begins by declaring a public sessionId
variable, and private DFC client variables. The sessionId is passed into the
form from the Main() subroutine and is used to instantiate local copies of the
DFC client variables.

' frmSpy.frm
Option Explicit

Public sessionID As String

Private currentId As IDfId
Private cx As DfClientX
Private client As IDfClient
Private session As IDfSession

8.1.2.2.1 Form_Load()

The Form_Load() subroutine uses the same technique for instantiating DFC
client objects as the skeleton code in Chapter 2, Getting Started with Application
and Components. The remainder of the code initializes the various controls on
the form and configures the UI.

Private Sub Form_Load()

 On Error GoTo HandleError

 ' set up dfc for form
 If (session Is Nothing) Then
 Set cx = New DfClientX
 Set client = cx.getLocalClient
 Set session = client.findSession(sessionID)
 End If

Chapter 8 – Putting It All Together In A Sample Application

363

 ' enable buttons
 Me.btn_Exit.Enabled = True
 Me.btn_SelectObject.Enabled = True
 Me.btn_Query.Enabled = True

 ' disable buttons
 Me.btn_CompAttrDump.Enabled = False
 Me.btn_Dump.Enabled = False
 Me.btn_Location.Enabled = False

 ' hide query count label
 Me.lbl_QueryTotal.Visible = False

 ' config rich text box
 Me.rtx_Output.Font.Name = "Courier"
 Me.rtx_Output.Font.Size = "10"
 Me.rtx_Output.RightMargin = 100000

The subroutine then prints introductory and copyright information to the
RichTextBox. It uses the appendOutput() subroutine to print this
information. This subroutine is discussed in Section 8.1.2.2.8, Miscellaneous
Subroutines, and simply formats and outputs a string to the RichTextBox.

 ' fill textbox with intro message
 Call appendOutput("dmSpy Utility " & "version " & App.Major _
 & "." & App.Minor & " (c) 2004 M. Scott Roth" _
 & vbCrLf, True)
 Call appendOutput("Select an object from the Docbase by " _
 & "clicking "the ")
 Call appendOutput("'Select Object' button on the right." _
 & vbCrLf)
 Call appendOutput("Then select:" & vbCrLf)
 Call appendOutput(" 1. 'Dump Attrs' to display all of " _
 & "the object's ")
 Call appendOutput(" attributes")
 Call appendOutput(" 2. 'Dump Comp. Attrs' to display " _
 & "the object's ")
 Call appendOutput(" computed attributes")
 Call appendOutput(" 3. 'Locations' to show the " _
 & "object's locations")
 Call appendOutput(vbCrLf & "Or, click the 'Run Query' " _
 & "button to execute a ")
 Call appendOutput("DQL query.")

Chapter 8 – Putting It All Together In A Sample Application

364

The subroutine ends with error handling code. This is the same error handling
code discussed in Chapter 5, Proven Solutions to Common Tasks, and is used
repeatedly throughout this application. Note the use of the
GetDesktopWindow() Win32 API call to obtain a handle to desktop window.

HandleError:

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

End Sub

When the application runs and the user logs in, the Form_Load() subroutine
displays the welcome screen as shown in Figure 8.3.

Figure 8.3 - dmSpy Welcome Screen

Chapter 8 – Putting It All Together In A Sample Application

365

8.1.2.2.2 Select Object Button

The first button on the form is the Select Object button. This button opens the
Object Selector form. Its event handler is the btn_SelectObject_Click()
subroutine. As you may recall, the Object Selector form was created to allow the
user to navigate the Docbase and choose an object. Once an object is successfully
chosen, its Id is stored in the frmSpy's global IDfId variable, currentId.
When an object is selected, additional buttons on the interface are enabled.

Private Sub btn_SelectObject_Click()
 Dim frmOS As New frm_ObjectSelector

 On Error GoTo HandleError

 ' hide query count label
 Me.lbl_QueryTotal.Visible = False

 frmOS.sessionID = sessionID
 frmOS.cabinet = "Temp"
 frmOS.Show vbModal

 ' get selected object
 If (Not frmOS.bCancel) Then
 Set currentId = cx.getId(frmOS.objectId)

 ' set object id label
 Me.lb_ObjectId.Caption = "Object Id: " _
 & currentId.toString
 Me.lb_ObjectId.Visible = True

 ' enable buttons
 Me.btn_Dump.Enabled = True
 Me.btn_CompAttrDump.Enabled = True
 Me.btn_Location.Enabled = True

 ' default action is attr dump
 Call btn_Dump_Click
 Else
 Set currentId = Nothing
 Me.btn_Dump.Enabled = False
 Me.btn_CompAttrDump.Enabled = False
 Me.btn_Location.Enabled = False
 Me.lb_ObjectId.Visible = False

 ' if cancelled, go back to welcome message

Chapter 8 – Putting It All Together In A Sample Application

366

 Call Form_Load

 End If

HandleError:

 Set frmOS = Nothing

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

End Sub

The ObjectSelector form is shown in Figure 8.4.

After an object is selected, the application's default behavior is to dump the
selected object's attributes by calling the btn_Dump_Click() subroutine.

Figure 8.4 – Object Selector Form

Chapter 8 – Putting It All Together In A Sample Application

367

8.1.2.2.3 Dump Attrs Button

The Dump Attrs button is the default action for the form after an object is
selected. The btn_Dump_Click() subroutine implements the event handler
for this button. The subroutine simply dumps the selected object’s attributes to
the RichTextBox using the IDfPersistentObject.dump() method.

Private Sub btn_Dump_Click()
 Dim pObj As IDfPersistentObject
 Dim sLock As DcSessionLock

 On Error GoTo HandleError

 ' hide query count label
 Me.lbl_QueryTotal.Visible = False

 ' lock session
 Set sLock = lockSession(session, "Dump")

 ' fetch current object
 Set pObj = session.GetObject(currentId)

 ' dump it
 Me.rtx_Output.Text = ""
 Call appendOutput(pObj.dump, True)

HandleError:

 If (Not sLock Is Nothing) Then
 sLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

End Sub

The result of clicking the Dump Attrs button is shown in Figure 8.5.

Chapter 8 – Putting It All Together In A Sample Application

368

Figure 8.5 - dmSpy Dump Attributes

8.1.2.2.4 Dump Comp. Attrs Button

The btn_CompAttrDump_Click() subroutine runs when the Dump Comp.
Attrs button is clicked. This subroutine dumps all of the selected object’s
computed attributes to the RichTextBox. It accomplishes this using many
different techniques; all of which were listed in Chapter 7, Tips, Tools and Handy
Information.

This subroutine uses the formatOutput() subroutine to output information to
the RichTextBox in a predefined format. Like appendOutput(), this
subroutine is also defined at the end of the code listing, and simply formats and
outputs strings to the RichTextBox.

Private Sub btn_CompAttrDump_Click()
 Dim sObj As IDfSysObject
 Dim i As Integer
 Dim tmp As String
 Dim sLock As DcSessionLock

 ' hide query count label
 Me.lbl_QueryTotal.Visible = False

Chapter 8 – Putting It All Together In A Sample Application

369

 On Error GoTo HandleError

 ' lock the session
 Set sLock = lockSession(session, "CompAttrDump")

 ' fetch current object
 Set sObj = session.GetObject(currentId)

 Call appendOutput("COMPUTED ATTRIBUTES" & vbCrLf, True)

 ' _accessor name
 For i = 0 To sObj.getAccessorCount - 1
 tmp = sObj.getAccessorName(i)
 If (i = 0) Then
 Call formatOutput("_accessor_name", tmp)
 Else
 Call formatOutput("", tmp)
 End If
 Next i

 ' _accessor_permit
 For i = 0 To sObj.getAccessorCount - 1
 tmp = sObj.getAccessorPermit(i)
 If (i = 0) Then
 Call formatOutput("_accessor_permit", tmp)
 Else
 Call formatOutput("", tmp)
 End If
 Next i

 ' _accessor_xpermit
 For i = 0 To sObj.getAccessorCount - 1
 tmp = sObj.getAccessorXPermit(i)
 If (i = 0) Then
 Call formatOutput("_accessor_xpermit", tmp)
 Else
 Call formatOutput("", tmp)
 End If
 Next i

 ' _accessor_xpermitnames
 For i = 0 To sObj.getAccessorCount - 1
 tmp = sObj.getAccessorXPermitNames(i)
 If (i = 0) Then
 Call formatOutput("_accessor_xpermitnames", tmp)
 Else

Chapter 8 – Putting It All Together In A Sample Application

370

 Call formatOutput("", tmp)
 End If
 Next i

 ' _acl_ref_valid
 Call formatOutput("_acl_ref_valid", sObj.getAclRefValid)

 ' _alias_set
 Call formatOutput("_alias_set", sObj.getAliasSet)

 ' _allow_change_location
 Call formatOutput("_allow_change_location", _
 sObj.getBoolean("_allow_change_location"))

 ' _allow_change_permit
 Call formatOutput("_allow_change_permit", _
 sObj.getBoolean("_allow_change_permit"))

 ' _allow_change_state
 Call formatOutput("_allow_change_state", _
 sObj.getBoolean("_allow_change_state"))

 ' _allow_execute_proc
 Call formatOutput("_allow_execute_proc", _
 sObj.getBoolean("_allow_execute_proc"))

 ' _allow_change_owner
 Call formatOutput("_allow_change_owner", _
 sObj.getBoolean("_allow_change_owner"))

 ' _cached
 Call formatOutput("_cached", sObj.getBoolean("_cached"))

 ' _changed
 Call formatOutput("_changed", sObj.isDirty)

 ' _componentID
 If (sObj.isVirtualDocument) Then
 For i = 0 To sObj.getComponentIdCount - 1
 If (i = 0) Then
 Call formatOutput("_componentID", _
 sObj.getComponentId(i).toString)
 Else
 Call formatOutput("", _
 sObj.getComponentId(i).toString)
 End If
 Next i

Chapter 8 – Putting It All Together In A Sample Application

371

 End If

 ' _containID
 If (sObj.isVirtualDocument) Then
 For i = 0 To sObj.getComponentIdCount - 1
 If (i = 0) Then
 Call formatOutput("_containID", _
 sObj.getContainId(i).toString)
 Else
 Call formatOutput("", _
 sObj.getContainId(i).toString)
 End If
 Next i
 End If

 ' _content_state
 For i = 0 To sObj.getContentStateCount - 1
 If (i = 0) Then
 Call formatOutput("_content_state", _
 sObj.getContentState(i))
 Else
 Call formatOutput("", sObj.getContentState(i))
 End If
 Next i

 ' _count
 Call formatOutput("_count", sObj.getAttrCount)

 ' _current_state
 Call formatOutput("_current_state", sObj.getCurrentState)

 ' _docbase_id
 Call formatOutput("_docbase_id", _
 sObj.getObjectId.getDocbaseId)

 ' _id
 Call formatOutput("_id", sObj.getObjectId.toString)

 ' _isnew
 Call formatOutput("_isnew", sObj.isNew)

 ' _isreplica
 Call formatOutput("_isreplica", sObj.isReplica)

 ' _masterdocbase
 Call formatOutput("_masterdocbase", sObj.getMasterDocbase)

Chapter 8 – Putting It All Together In A Sample Application

372

 ' _permit
 Call formatOutput("_permit", sObj.getPermit)

 ' _policy_name
 Call formatOutput("_policy_name", sObj.getPolicyName)

 ' _status
 Call formatOutput("_status", sObj.getStatus)

 ' _type_id
 Call formatOutput("_type_id", sObj.getString("_type_id"))

 ' _type_name
 Call formatOutput("_type_name", sObj.getTypeName)

 ' _xpermit
 Call formatOutput("_xpermit", _
 sObj.getXPermit(session.getUser("").getUserName))

 ' _xpermit_list
 Call formatOutput("_xpermit_list", sObj.getXPermitList)

 ' _xpermit_names
 Call formatOutput("_xpermit_names", _
 sObj.getXPermitNames(session.getUser("").getUserName))

HandleError:

 If (Not sLock Is Nothing) Then
 sLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

End Sub

The result of clicking the Dump Comp. Attrs button is shown in Figure 8.6.

Chapter 8 – Putting It All Together In A Sample Application

373

Figure 8.6 - dmSpy Dump Computed Attributes

8.1.2.2.5 Locations Button

The btn_Location_Click() subroutine runs whenever the Locations
button is clicked. This subroutine uses queries discussed in Chapter 3, Working
with Queries and Collections, to determine all of the selected object's locations.

Private Sub btn_Location_Click()
 Dim sObj As IDfSysObject
 Dim tmp As String
 Dim i As Integer
 Dim fObj As IDfFolder
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim sLock As DcSessionLock

 ' hide query count label
 Me.lbl_QueryTotal.Visible = False

 On Error GoTo HandleError

 ' lock session
 Set sLock = lockSession(session, "Location")

Chapter 8 – Putting It All Together In A Sample Application

374

 ' fetch current object
 Set sObj = session.GetObject(currentId)

 Call appendOutput("LOCATIONS" & vbCrLf, True)

 '
 ' get path on file system
 ' some objects don't have content (i.e., dm_folder)
 '
 If (sObj.getContentSize > 1) Then
 tmp = sObj.getPath(0)
 If (tmp = "") Then
 Call formatOutput("file system location", _
 "Content not stored on file system")
 Else
 Call formatOutput("file system location", tmp)
 End If
 End If

 '
 ' get path in docbase
 ' if its not in a folder it must be at the root level
 '
 If (sObj.getFolderIdCount = 0) Then
 Call formatOutput("docbase location", "/")
 Else
 For i = 0 To sObj.getFolderIdCount - 1
 Set fObj = session.GetObject(sObj.getFolderId(i))
 Call formatOutput("docbase location", _
 fObj.getFolderPath(0))
 Next i
 End If

 '
 ' get virtual document participation
 '
 Set q = cx.getQuery
 q.setDQL ("select parent_id from dmr_containment where " _
 & "component_id = '" & sObj.getChronicleId.toString _
 & "'")

 Set col = q.execute(session, DFCLib.IDfQuery_DF_READ_QUERY)

 i = 0
 While (col.Next = True)
 tmp = col.getString("parent_id")

Chapter 8 – Putting It All Together In A Sample Application

375

 If (i > 0) Then
 Call formatOutput("", tmp)
 Else
 Call formatOutput("virtual document", tmp)
 End If
 i = i + 1
 Wend
 col.Close

 '
 ' get workflow participation
 '
 q.setDQL ("select distinct r_workflow_id from dmi_package " _
 & " where any r_component_id = '" _
 & sObj.getObjectId.toString & "'")

 Set col = q.execute(session, DFCLib.IDfQuery_DF_READ_QUERY)

 i = 1
 While (col.Next = True)
 If (i = 1) Then
 Call formatOutput("workflow", _
 col.getString("r_workflow_id"))
 Else
 Call formatOutput("", col.getString("r_workflow_id"))
 End If
 i = i + 1
 Wend
 col.Close

HandleError:

 If (Not sLock Is Nothing) Then
 sLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If

Chapter 8 – Putting It All Together In A Sample Application

376

 End If

End Sub

The result of clicking the Locations button is shown in Figure 8.7.

Figure 8.7 - dmSpy Locations

8.1.2.2.6 Run Query Button

The btn_Query_Click() subroutine runs when the Run Query button is
clicked. It is the most involved subroutine in the application, but when you break
it down, you will see it contains nothing difficult. At its core, the
btn_Query_Click() subroutine uses the collection-processing technique
discussed in Chapter 3, Working with Queries and Collections.

To get the DQL string from the user, dmSpy uses a simple Visual Basic
InputBox as shown in Figure 8.8; nothing fancy.

Chapter 8 – Putting It All Together In A Sample Application

377

Figure 8.8 - Query Input Box

After the DQL string is obtained, three checks are made.

1. If the string is blank, the subroutine exits. This will happen if the user
clicks Cancel on the InputBox.

2. Ensure that the first six letters of the DQL string spell the word SELECT.
The dmSpy application will only process DQL queries of the SELECT
nature. If the DQL string doesn’t start with the word SELECT, exit the
subroutine.

3. If the query will return more than MAX_RESULTS rows, exit the
subroutine. The row count is obtained using a collection counting
technique discussed in Chapter 3, Working with Queries and Collections.
I chose 250 as an arbitrary upper limit for MAX_RESULTS; feel free to
change it.

Private Sub btn_Query_Click()
 Dim dql As String
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim attr As IDfAttr
 Dim numCols As Integer
 Dim colName As String
 Dim colValue As String
 Dim tmp As String
 Dim i As Integer
 Dim j As Integer
 Dim sLock As DcSessionLock
 Dim cnt As Integer
 Dim results() As String
 Dim resultsSize() As Integer

 On Error GoTo HandleError

Chapter 8 – Putting It All Together In A Sample Application

378

 ' get dql string
 dql = InputBox("Enter DQL query and click 'OK' to run it, " _
 & "or 'Cancel' to exit.", "Query")

 '
 ' check if cancel clicked
 '
 If (dql = "") Then
 ' hide query count label
 Me.lbl_QueryTotal.Visible = False
 Exit Sub
 End If

 '
 ' check for SELECT
 '
 If (LCase(Left(dql, 6)) <> "select") Then
 MsgBox "The dmSpy query processor can only handle " _
 & "SELECT queries. Please enter a new query.", _
 vbCritical, "Wrong Query Type"
 Me.lbl_QueryTotal.Visible = False
 Exit Sub
 End If

 ' disable non-applicable buttons
 Me.btn_CompAttrDump.Enabled = False
 Me.btn_Dump.Enabled = False
 Me.btn_Location.Enabled = False

 ' clear the current object
 Set currentId = Nothing

 ' hide object id label
 Me.lb_ObjectId.Visible = False

 '
 ' show query total
 '
 cnt = QueryCount(dql)
 If (cnt < MAX_RESULTS) Then
 Me.lbl_QueryTotal.Caption = "Result Count: " & cnt
 Me.lbl_QueryTotal.Visible = True
 Else
 MsgBox "Your query will return " & cnt & " objects, " _
 & "which is more than the " & MAX_RESULTS _
 & " limit. Please refine your query.", _

Chapter 8 – Putting It All Together In A Sample Application

379

 vbCritical, "Limit Exceeded"
 Me.lbl_QueryTotal.Visible = False
 Exit Sub
 End If

The QueryCount() function returns the number of rows the query will return.
It is discussed in more detail in Section 8.1.2.2.8, Miscellaneous Subroutines. If
the query passes the three tests, it is executed.

 ' user feedback
 Screen.MousePointer = vbHourglass

 ' lock session
 Set sLock = lockSession(session, "Query")

 ' run query
 Set q = cx.getQuery
 q.setDQL (dql)
 Set col = q.execute(session, DF_READ_QUERY)

The collection is processed using the technique described in Chapter 3, Working
with Queries and Collections. The major difference between what was described
there, and what is implemented here, is the use of arrays to hold the values
extracted from the collection. To make the display of the query results more
aesthetically pleasing, the collection rows and columns are captured in a two-
dimensional array (results), and the length of the longest value in each column
is recorded in another array (resultsSize). After the arrays are fully loaded,
their contents are output to the RichTextBox in easy-to-read columns.

 ' output query
 Call appendOutput("QUERY" & vbCrLf, True)
 Call appendOutput(q.getDQL & vbCrLf & vbCrLf)

 '
 ' work with collection
 ' get number of attrs in collection
 numCols = col.getAttrCount

 ' resize result arrays
 ReDim results(cnt, numCols)
 ReDim resultsSize(numCols)

 ' get column names from attrs in collection
 For i = 1 To numCols

Chapter 8 – Putting It All Together In A Sample Application

380

 colName = col.GetAttr(i - 1).getName

 ' put colName in array
 results(0, i) = colName

 ' capture column width
 If (Len(colName) > resultsSize(i)) Then
 resultsSize(i) = Len(colName)
 End If
 Next i

 '
 ' iterate over collection and process each row
 '
 j = 1
 While (col.Next = True)

 ' process each column in a row
 For i = 1 To numCols
 Set attr = col.GetAttr(i - 1)

 ' get value in column
 Select Case attr.getDataType
 Case DF_BOOLEAN
 colValue = col.getBoolean(attr.getName)
 Case DF_DOUBLE
 colValue = col.getDouble(attr.getName)
 Case DF_ID
 colValue = col.getId(attr.getName).toString
 Case DF_INTEGER
 colValue = col.getInt(attr.getName)
 Case DF_STRING
 colValue = col.getString(attr.getName)
 Case DF_TIME
 colValue = col.getTime(attr.getName).toString
 End Select

 ' put colValue in array
 results(j, i) = colValue

 ' capture column width
 If (Len(colValue) > resultsSize(i)) Then
 resultsSize(i) = Len(colValue)
 End If
 Next i

 ' increment row in results array

Chapter 8 – Putting It All Together In A Sample Application

381

 j = j + 1
 Wend
 col.Close

 Call appendOutput("QUERY RESULTS" & vbCrLf)

 ' output columns with padding
 For j = 0 To cnt
 tmp = ""
 For i = 1 To numCols
 tmp = tmp & "| " & results(j, i) _
 & Space(resultsSize(i) – _
 Len(results(j, i)))
 Next i
 tmp = tmp & " |"
 Call appendOutput(tmp)
 Next j

HandleError:

 ' user feedback
 Screen.MousePointer = vbDefault

 If (Not sLock Is Nothing) Then
 sLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If
 End If

End Sub

Typical query output is shown in Figure 8.9.

Chapter 8 – Putting It All Together In A Sample Application

382

Figure 8.9 - dmSpy Query Results

8.1.2.2.7 Exit Button

The btn_Exit_Click() subroutine is the simplest in the application. It runs
when the Exit button is clicked and simply disconnects the session and unloads
the frmSpy form.

Private Sub btn_Exit_Click()

 ' disconnect session
 session.disconnect

 ' close form
 Unload Me

End Sub

8.1.2.2.8 Miscellaneous Subroutines

Three subroutines have been mentioned but not yet discussed, they are:
appendOutput(), formatOutput(), and QueryCount(). The

Chapter 8 – Putting It All Together In A Sample Application

383

appendOutput() and formatOutput() subroutines format the data output
to the RichTextBox. The appendOutput() subroutine appends str to the
text already in the RichTextBox, unless the blnClear Boolean argument is
passed. If blnClear is set to True, the RichTextBox is cleared, and str is
add as its only content.

Sub appendOutput(str As String, Optional blnClear As Boolean)

 If (blnClear = True) Then
 Me.rtx_Output.Text = ""
 End If

 Me.rtx_Output.Text = Me.rtx_Output.Text & vbCrLf & str

End Sub

The formatOutput() subroutine prints strLeft and strRight to the
RichTextBox in two padded columns using the appendOutput() subroutine.

Sub formatOutput(strLeft As String, strRight As String)
 Dim tmp As String

 tmp = " " & strLeft & Space(27 - Len(strLeft)) & ": " _
 & strRight

 appendOutput (tmp)

End Sub

The final function in the application, QueryCount(), calculates the number of
rows the query will return. This subroutine employs the second collection sizing
technique described in Chapter 3, Working with Queries and Collections, to
calculate the number of rows that will be returned by the query.

Function QueryCount(dql As String) As Integer
 Dim q As IDfQuery
 Dim col As IDfCollection
 Dim sLock As DcSessionLock
 Dim i As Integer
 Dim c As Integer
 Dim countDQL As String

 On Error GoTo HandleError

Chapter 8 – Putting It All Together In A Sample Application

384

 c = -1

 ' build count DQL string
 i = InStr(1, LCase(dql), "from", vbTextCompare)
 countDQL = "select count(*) " & Right(dql, Len(dql) - i + 1)

 Set q = cx.getQuery
 q.setDQL (countDQL)

 ' lock session
 Set sLock = lockSession(session, "Query Count")

 Set col = q.execute(session, DF_READ_QUERY)

 ' process collection
 col.Next
 c = col.getInt("count(*)")
 col.Close

HandleError:

 If (Not sLock Is Nothing) Then
 sLock.ReleaseLock
 End If

 If (Len(Err.Description) > 0) Then
 Dim e As IDfException
 Set e = cx.parseException(Err.Description)
 r.AddException e
 r.Display GetDesktopWindow(), DC_REPORT_OK_ONLY
 End If

 If (Not col Is Nothing) Then
 If (col.getState <> DF_CLOSED_STATE) Then
 col.Close
 End If
 End If

 ' return result
 QueryCount = c

End Function

There are two important things to note about this subroutine. The first is the
parser that replaces the SELECT clause with the COUNT(*) clause is not

Chapter 8 – Putting It All Together In A Sample Application

385

foolproof. It can be tricked and will break the application. The second important
thing to note is that to calculate the number of rows, the query is executed. This
can be an expensive operation depending upon the query. A better solution to
limit the number of rows returned by the user's query could be to use the
RETURN_TOP DQL hint. However, this option will not inform you of the actual
number of rows returned. See the Documentum Content Server DQL Reference
Manual for more information regarding DQL hints.

8.1.3 Using dmSpy

Now that you’ve written dmSpy, compile it by choosing Make dmSpy.exe…
from the File menu in the Visual Basic IDE, and run it. After logging in, you
should be greeted by the welcome screen where you can choose an object to spy
on, or enter a query.

8.2 Chapter Summary
This chapter presented dmSpy, a real-world application, and not a bad little tool
for only 500 lines of code! It is a good demonstration of ways to apply many of
the techniques developed and discussed in this book. In fact, it should be clear
that aside from the design of the UI, most of the "meat" in this application was cut
and pasted from previous chapters in this book. That, of course, was the idea!
The techniques discussed in this book are proven techniques. Why re-invent them
each time you need them?

Table 8.3 summarizes the techniques used in this application.

Table 8.3 - of Techniques Used in dmSpy

Technique (Chapter) dmSpy Subroutine Name
Application skeleton code
(Chapter 2, Getting Started with
Applications and Components)

dmSpy Project, Main(),
Form_Load()

Login manager
(Chapter 5, Proven Solutions to Common
Tasks)

Main()

Chapter 8 – Putting It All Together In A Sample Application

386

Technique (Chapter) dmSpy Subroutine Name
sleep() function
(Chapter 5, Proven Solutions to Common
Tasks)

lockSession()

lockSession() function
(Chapter 5, Proven Solutions to Common
Tasks)

Numerous, (e.g., btn_Dump_
Click())

Session Id passing
(Chapter 5, Proven Solutions to Common
Tasks)

Main(), btn_SelectObject
_Click()

Local DFC client variables
(Chapter 5, Proven Solutions to Common
Tasks)

Form_Load()

Error handling
(Chapter 5, Proven Solutions to Common
Tasks)

Numerous, (e.g., btn_Dump_
Click())

Accessing computed attributes
(Chapter 7, Tips, Tools and Handy
Information)

btn_CompAttrDump_click()

Finding object locations on the file
system, in the Docbase, in virtual
documents, and in workflows
(Chapter 3, Working with Queries and
Collections)

btn_Location_Click()

Collection processing pattern
(Chapter 3, Working with Queries and
Collections)

btn_Query_Click()

Calculating collection size
(Chapter 3, Working with Queries and
Collections)

btn_Query_Click()

The Object Selector form
(Chapter 6, Working with Screen Controls)

frm_ObjectSelector.frm
file

Afterword

387

Afterword
As a fellow programmer, I know and appreciate the value of leveraging someone
else's work, and I am delighted you have chosen to leverage mine. I believe—and
I hope you agree—this book fills an important void in our community. It sits in
the gap between what Documentum offers out-of-the-box and in training courses,
and what others have pain-stakingly mastered over time. My hope is that it will
enable many beginning developers to quickly master the basics of writing
Documentum Desktop applications, and become productive, respected members
of this community.

As I stated earlier, this book largely grew out of my own experiences and
research. Though I vetted this book with experts in the industry and
Documentum, you may have even better ideas or disagree with mine. Please
contact me; I'd love to hear from you and get your thoughts. The easiest way to
reach me is through my website, www.dm-book.com. Thank you for taking the
time to read this book, it was a labor of love for me to write. I hope you found it
helpful.

Before closing, I want to acknowledge and thank the many people in my life that
have made this book possible. Because I have a "day job", this book was
completed primarily in my "spare time" (read: late at night and weekends).
Therefore, it had no budget–monetarily or otherwise–and its existence wouldn't be
possible without the help and support of these wonderful people. These people
have all given graciously of their time, talents and energy to help me complete
this book.

At the top of this list are Rachael and Kristin, my wife and daughter, to whom this
book is dedicated. They have tolerated me working on this manuscript in some
form or fashion for a very long time. Without their love, encouragement and
understanding, I would have given up on this project long ago. I love them both
dearly, and thank God for the blessings they are to me.

Afterword

388

I thank Scott Effler who has been a wonderful and enlightening colleague for
many years. It is a pleasure to work with someone as knowledgeable and capable
as Scott, and I am sincerely grateful for the many challenges and ideas he has
presented me over the years. Scott's reviews of this manuscript have been
extremely helpful.

I also owe a huge thanks to Michael Trafton of the Blue Fish Development Group
(keepers of the dm_developer website) for his thorough technical review of
this manuscript. Mike has been invaluable in assuring the quality of the technical
information in this book.

Dan Biggins of Zen Technology was also a key reviewer of this manuscript, and I
thank Dan for all of his efforts as well.

I thank Stacey Page, my boss at SAIC, for her continued interest and support.
Stacey was instrumental in helping me navigate the legality and practicality of
this project with the corporation. Thanks also to Tina Nassif-Shinn in the SAIC
contracts department, and Faye Hammersley in the SAIC legal department for
their work in tracking down contracts, and clearing the legal way for me to
publish this book.

Thanks to Steve Moline who has always been an enthusiastic supporter, a great
project manager, and a fun and admirable guy.

Many thanks to Sharon Allison for the "binding" and proofreading jobs she did
while assembling various drafts of this book.

Thanks to my Mom and Dad, who have always been tremendous role models in
my life, and instilled in me the confidence and discipline to pursue a project like
this.

Finally, I want to reiterate my thanks to God the Father for sending His Son, Jesus
Christ, to redeem me, and for the many blessings He has bestowed on my family.

Soli Deo Gloria!

Index

389

Index

A
a_full_text 83, 110, 111, 252, 253
ACX 50, 51, 52, 53, 345
apiExec() iv, 306
apiGet() iv, 306, 307
apiSet() iv, 306, 307
apply() 76, 90, 123, 124, 190, 192,

193
audit trail 196, 197, 198
auditing 4, 161, 162, 196

B
batch_hint_size 312
Binary Compatibility 34

C
cache map 79
cache_queries 80, 311, 313
cached query 75, 78, 79, 80, 81
casting 14, 17
client_cache_size 312
client_session_timeout 350
COM i, 7, 11, 12, 15, 17, 18, 19, 29,

30, 34, 47, 61, 62, 182, 183, 324

Command State Flag v, 56, 58, 59,
340

Computed Attribute v, 320, 373
concurrent_sessions 351
conditional value assistance 248, 250,

254, 270, 274, 275, 276, 277, 301,
310

ConnectFlag 163, 165, 167

D
DART 30, 47, 48, 54, 63, 174
Db-Documentum viii
DcAbstractItem 47
DcComponentDispatcher 12, 30, 174,

175, 176, 177
DcCustomOnLoadingCode() 61
DcCustomOnSavingCode() 61
DcCustomOnUnloadingCode() 61
DcFind 47, 50, 236
DcFindTarget 66, 67
DcItems 12, 46, 47, 175, 176, 177
DcLoginManager 12, 13, 25, 38, 44,

163, 165, 166, 167, 228, 233, 360
DcProgressMonitor 156, 158
DcRegistryKey 202, 203, 204, 205

Index

390

DcReport 6, 12, 41, 45, 177, 178,
179, 218, 220, 242, 290, 360

DcRunQuery 12
DcSessionLock 170, 171, 172, 238,

288, 292, 294, 295, 298, 354, 355,
356, 361, 367, 368, 373, 377, 383

deep copy 137, 150
deep delete 133, 137, 149, 150
DFC i, v, ii, iii, iv, ix, 1, 2, 3, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 20, 26, 27, 41, 45, 49, 66, 68,
74, 77, 83, 98, 114, 127, 131, 132,
145, 146, 159, 162, 167, 168, 169,
170, 178, 180, 182, 183, 186, 187,
188, 190, 193, 195, 202, 214, 216,
221, 227, 232, 238, 239, 253, 259,
271, 289, 290, 303, 304, 306, 319,
320, 362, 386, 402

DFCLib 10, 11, 239, 290, 291, 374,
375

DfClient 64, 169
DfClientX 6, 11, 13, 14, 26, 37, 38,

40, 41, 45, 74, 148, 162, 166, 167,
168, 169, 183, 188, 189, 190, 203,
228, 233, 239, 252, 259, 272, 290,
291, 362

DfwAttrCombo 255
DfwAttributeLabel 248, 252, 253,

254
DfwAttrList 255
DfwAvailableDocbasesCombo 255,

257
DfwCheckBox 248, 252
DfwComboBox 248, 251, 254, 270,

274
DfwConnectedDocbasesCombo 255
DfwFormatsCombo 256
DfwFormatsList 256

DfwGroupsCombo 256
DfwGroupsList 256
DfwListBox 248, 252, 254, 270
DfwOperatorCombo 256
DfwOTCombo 256
DfwOTList 256
DfwRepeating 248, 251, 257
DfwTextBox 248, 251, 254, 259, 270
DfwUsersCombo 256, 258
DfwUsersList 256
dm_activity 10, 115, 116, 118, 315,

317
dm_audittrail 196, 197, 198,

199, 315, 318
dm_dbo 111, 112, 113
dm_DMClean 123, 224
dm_DMFileScan 123
dm_document 10, 14, 15, 16, 17,

67, 68, 70, 72, 74, 82, 84, 85, 86,
87, 88, 89, 90, 91, 92, 94, 95, 97,
98, 99, 100, 103, 105, 107, 108,
109, 121, 122, 123, 127, 128, 129,
131, 132, 133, 136, 183, 184, 187,
227, 249, 251, 257, 260, 261, 264,
277, 283, 284, 297, 298, 308, 314,
315, 316, 319

dm_dump_record 224, 225, 226, 227,
228, 230, 231, 234, 316, 317

dm_folder 10, 101, 102, 103, 122,
123, 135, 138, 139, 149, 215, 216,
217, 219, 226, 227, 282, 294, 295,
316, 374

dm_FulltextMgr 83, 110
dm_persistentobject 9, 10
dm_process 10, 115, 116, 317
dm_registered 112, 113, 316, 317
dm_sysobject 9, 10, 14, 87, 101, 103,

109, 110, 111, 114, 117, 120, 121,

Index

391

123, 133, 134, 138, 210, 221, 242,
244, 297, 298, 305, 306, 307, 315,
317, 319, 320, 341, 342

dm_workflow 10, 115, 116, 118, 317,
318

dmAPIExec() iv, 304, 306
dmAPIGet() iv, 304, 305, 306
dmAPISet() iv, 304, 305, 306
DMCL 7, 9, 170, 186, 311
DMCL cache 170, 311
dmcl.ini v, 80, 96, 180, 186, 187,

310, 311, 313
dmi_package 115, 116, 117, 118,

317, 318, 375
dmi_workitem 10, 115, 116, 118,

317, 318
dmMkDir() 138, 217, 218, 220
dmSpy v, 4, 6, 354, 355, 356, 359,

360, 363, 364, 368, 373, 376, 377,
378, 382, 385

DocApp i, 29, 30, 35, 42, 47, 48, 49,
50, 51, 52, 53, 57, 59, 63, 175,
249, 344, 345

Docbase Browser 257, 261, 270, 278,
279, 280, 284, 293, 302

Docbase cache 310
Docbase-aware controls 4, 246, 247,

255, 257, 259, 262, 268, 271, 278,
284, 286, 301, 302

DocBroker v, 11, 192, 210, 255, 258,
310, 311

Documentum API iv, viii, 76, 180,
227, 232, 235, 303, 304, 306, 319

Documentum Component Dispatcher
 23, 30, 35, 39, 47

Documentum Desktop Component
Source 36, 42, 60, 145, 170, 202,
279, 288, 354

Documentum Docbase Browser 257,
278

Documentum Foundation Classes i,
ix, 1, 7, 73, 354

Documentum Open Dialog iv, 257,
258, 259, 260, 262, 263, 264, 265,
267, 268, 285, 302, 357

Documentum Validation Event
Dispatcher 248, 249

Documentum Validation Widgets249
Documentum Widget Logic 249
DRL 209, 210, 211, 212, 213
Dump iv, 4, 161, 223, 224, 225, 226,

227, 228, 229, 230, 231, 232, 234,
236, 245, 357, 358, 363, 365, 366,
367, 368, 372, 373, 378, 386

dump_operation 225, 226, 227, 229
dump_parameter 225, 226, 227, 229

E
effective_date 80
e-mail 209, 212, 213, 221
error trapping 4, 6, 78, 180, 218, 220,

238, 285

G
getRegSubKeyList() 205, 206
global component 50, 52, 55, 58

I
i_chronicle_id 115, 120, 131, 210
iAPI32 iv, 234, 304, 309, 310
IDcComponent 29, 30, 37, 38, 39, 40,

46, 47
IDcComponent_DeInit 29, 30, 37, 40
IDcComponent_Init 29, 30, 37, 38,

39, 40, 47

Index

392

IDcComponent_Run 29, 30, 37, 39,
40

IDfACL 10
IDfActivity 10
IDfAttr 105, 198, 243, 377
IDfAttrLine 68, 70, 72
IDfCancelCheckoutOperation 147,

153
IDfCheckedOutObject 203, 204
IDfCheckinOperation 14, 147, 154
IDfCheckoutOperation147, 151, 152,

153, 156, 158
IDfClient 6, 13, 26, 37, 40, 41, 45,

162, 166, 167, 168, 169, 193, 228,
233, 239, 272, 290, 362

IDfCollection 11, 15, 70, 74, 77, 81,
94, 95, 96, 97, 98, 99, 100, 101,
102, 104, 105, 106, 125, 132, 134,
137, 185, 198, 216, 222, 236, 240,
243, 273, 280, 282, 294, 295, 298,
373, 377, 383

IDfCopyOperation 146, 150
IDfDeleteOperation 146, 148, 149,

150
IDfDocbaseMap 11
IDfDocument 10, 16, 17, 18
IDfException 11, 178, 220, 242, 292,

295, 296, 299, 364, 366, 367, 372,
375, 381, 384

IDfExportOperation 147
IDfFile 11
IDfFolder 10, 130, 137, 140, 214,

215, 218, 373
IDfFormat 10, 140, 141, 142, 143,

144
IDfGroup 10
IDfId 11, 14, 96, 97, 130, 136, 137,

222, 362, 365

IDfImportOperation 147
IDfList 11, 205, 206, 207, 214, 215,

274, 275, 276
IDfLoginInfo 11, 13, 162, 163
IDfMoveOperation 147
IDfOperation 10, 11, 14, 127, 145,

146, 148, 149, 152, 155, 157, 158,
159

IDfOperationMonitor 155, 156, 158,
201

IDfPersistentObject 9, 10, 14, 16, 17,
18, 96, 133, 134, 135, 148, 149,
150, 151, 153, 154, 156, 158, 197,
228, 233, 277, 367

IDfProcess 10
IDfProperties 11, 158, 275, 276
IDfQuery ii, 10, 11, 14, 66, 74, 77,

79, 81, 95, 96, 97, 99, 100, 101,
102, 105, 124, 132, 134, 137, 184,
185, 198, 215, 222, 236, 240, 273,
280, 282, 294, 295, 298, 373, 374,
375, 377, 383

IDfQueryLocation 68, 70, 72
IDfQueryMgr 11, 66, 68, 70, 72, 124,

236
IDfRegistry 202
IDfSession 6, 10, 11, 13, 26, 37, 40,

41, 45, 64, 74, 78, 79, 97, 130,
162, 166, 167, 168, 169, 171, 172,
218, 221, 228, 233, 239, 265, 272,
290, 304, 306, 307, 322, 361, 362

IDfSysObject 7, 9, 10, 14, 16, 17, 68,
72, 127, 128, 129, 130, 131, 132,
136, 137, 139, 140, 141, 142, 143,
144, 145, 148, 149, 151, 153, 154,
156, 158, 170, 172, 211, 213, 214,
215, 221, 250, 252, 272, 274, 277,
320, 368, 373

Index

393

IDfTime 11, 221
IDfTypedObject 11, 68, 72, 96, 97,

104
IDfUser 10
IDfValidationOperation 147
IDfValidator 274, 275, 276
IDfValueAssistance 11, 274, 275,

276
IDfViewedObject 204
IDfVirtualDocument 11
IDfWorkflow 10
IDfWorkItem 10
IDfXMLTransformOperation 147
iDQL32 iv, 304, 309, 310
Inbox ii, iii, 118, 119, 221, 222, 223,

341, 342
include_content 225, 226, 227, 229
Interactive Message Tester iv, 308
IUnknown 29, 176

J
Java vi, 6, 7, 15, 16, 17, 18, 183, 184,

185, 323, 327

L
library services 4, 126, 203
Load iv, 4, 26, 41, 45, 61, 161, 169,

186, 223, 224, 231, 232, 233, 234,
235, 236, 238, 239, 245, 252, 253,
259, 271, 272, 280, 290, 292, 294,
362, 364, 366, 385, 386

local_path 312
lockSession() 171, 172, 173, 300,

360, 361, 386
logging in 4, 24, 67, 161, 162, 163,

228, 233, 385
Login Manager iii, 23, 25, 35, 39, 44,

163, 164, 165, 166, 167, 168, 173,
228, 233, 257, 355, 360

M
mail_notification 351
Menu System Designer Tool 56, 58,

59, 60, 63, 340
MenuSystem.ini 55
Microsoft Outlook 212, 213

N
Notification v, 351

O
Object Permission v, 336, 337
type-specific component 50, 52, 53
Open Dialog 257, 258, 259, 260, 262,

263, 264, 265, 267, 268, 285, 302,
357

operation monitor 155, 156, 157, 159,
160, 199, 201

P
Package & Deployment Wizard 27,

28, 48, 49, 62
Perl viii
preload.exe 231, 233, 234
Progress Sentinel iii, 199, 200, 230
project group 42, 63

Q
Query Manager ii, 66, 68, 70, 71, 72,

73, 74, 124

R
r_object_id v, 60, 68, 70, 72, 74, 94,

95, 97, 98, 99, 100, 101, 102, 103,
107, 108, 109, 110, 111, 112, 114,
116, 117, 118, 120, 121, 122, 123,
131, 132, 133, 134, 138, 183, 184,

Index

394

185, 187, 188, 196, 199, 211, 216,
217, 222, 235, 239, 240, 257, 260,
266, 277, 280, 282, 283, 289, 293,
294, 295, 296, 298, 306, 308, 313,
314, 359

recursive 101, 102, 104, 125, 133,
134, 135, 137

registered table 79, 111, 112, 113,
125, 224, 338

Registered Table Permission v, 112,
338

registry 4, 140, 141, 143, 146, 147,
152, 153, 154, 160, 201, 202, 203,
204, 205, 206, 207, 208, 245, 316,
318

ReleaseLock() 170
revert() 235

S
Samson iv, 310
screen controls vii, 2, 4, 12, 237, 246,

247, 255, 268, 286, 288, 301, 402
SEARCH DOCUMENT

CONTAINS 82, 83, 84, 86, 107
SEARCH TOPIC 82, 84, 107, 108
server.ini v, 350
session locking 6, 167, 170, 238, 242,

285, 355
sleep() iii, 70, 172, 173, 174, 300,

360, 361, 386
SmartList 73

T
test harness 3, 42, 43, 45, 46, 47, 48,

63
trace_file 186, 187, 313
trace_level 186, 187, 313
tracing vii, 4, 98, 171, 180, 181, 182,

183, 186, 187, 188, 189, 190, 192,
193, 195, 309, 313, 346

U
Unlock 121, 170
Unregister 112
use_compression 313
user_auth_case 351

V
validation controls 4, 246, 247, 248,

249, 250, 252, 253, 255, 259, 268,
271, 275, 277, 278, 284, 301

Verity Query Language 82
virtual document 11, 114, 115, 125,

146, 150, 152, 154, 160, 182, 341,
342, 343, 344, 345, 354, 358, 374,
375, 386

VQL 82, 83, 84, 93

W
wf_sleep_interval 352
Workflow ii, v, 7, 106, 115, 116, 118,

182, 345, 352
WorkSpace 55, 308
www.dmdeveloper.com viii, ix, 388

[SOLI DEO GLORIA]
Proverbs 3:5-6

< inside back cover >

A Beginner's Guide to Developing

Documentum® 5 Desktop Applications

A Hands-on Guide of Techniques and Solutions
Using Visual Basic® and the DFC

"Scott Roth provides an invaluable resource to the Documentum community. The
first book of its kind, A Beginner's Guide to Developing Documentum Desktop
Applications teaches developers tricks that can take years to learn the hard way.
Where was this book when I first started?"

–Michael Trafton, Chief Architect, Blue Fish Development Group

"A Beginner's Guide to Developing Documentum Desktop Applications is the
missing piece in the puzzle for a Documentum developer. The answers to those
well kept Documentum secrets are unlocked inside.”

– Scott Effler, Business Solution Architect, SAIC

In this book, Scott Roth, an accomplished Documentum application developer,
has produced an invaluable reference of practical tips, techniques, and best
practices for developing Documentum Desktop applications. The material and
examples in this book range from an explanation of the application/component
framework, to the details of using query techniques and screen controls. Along
the way Mr. Roth reveals numerous best practices and proven solutions. This
book is a must-have for Documentum developers.

	1. Introduction
	1.1 Who Should Read This Book?
	1.2 Organization Of This Book
	1.3 Source Code
	1.4 Conventions Used In This Book
	1.4.1 Typographic
	1.4.2 Variables And Source Code
	1.4.3 Class And Interface Nomenclature

	1.5 A Brief Introduction To The Documentum Foundation Classes
	1.5.1 Docbase Classes
	1.5.2 Service Classes
	1.5.3 Documentum Desktop Classes

	1.6 Overview Of A Documentum Desktop Application
	1.7 Interface Inheritance And Type Casting In Visual Basic

	2 Getting Started With Applications And Components
	2.1 Building A Standalone Application
	2.1.1 Setting Up A Standalone Application Project
	2.1.2 Application Skeleton Code
	2.1.3 Debugging And Testing The Application
	2.1.4 Packaging And Deploying the Application

	2.2 Building A Component
	2.2.1 A Word About COM And Documentum Components
	2.2.2 Setting Up A Component Project
	2.2.3 Component Skeleton Code
	2.2.4 Debugging And Testing The Component
	2.2.4.1 Using A Visual Basic Test Harness
	2.2.4.2 Using A DocApp Test Harness

	2.2.5 Packaging A Component
	2.2.6 Adding A Component To A DocApp

	2.3 Modifying The Documentum Desktop Menu
	2.3.1 A Word About Menus
	2.3.2 Adding A Global Component To The Menu
	2.3.3 Adding A Type-Specific Component To The Menu
	2.3.4 Adding An Executable Application To The Menu

	2.4 Modifying Documentum Desktop Components
	2.5 Troubleshooting Component Delivery
	2.6 Chapter Summary

	3 Working With Queries And Collections
	3.1 How To Query The Docbase
	3.1.1 Using Run Query
	3.1.2 Using The Query Manager
	3.1.3 Using The IDfQuery Class

	3.2 Types Of Queries
	3.2.1 SQL Pass-Through Queries
	3.2.2 Cached Queries
	3.2.2.1 Cached Query Configuration
	3.2.2.2 Cached Query Example

	3.2.3 Full-Text Queries
	3.2.3.1 Full-Text Configuration
	3.2.3.2 Document Searches
	3.2.3.3 TOPIC Searches
	3.2.3.3.1 Evidence Operators
	3.2.3.3.2 Relational Operators
	3.2.3.3.3 Concept Operators
	3.2.3.3.4 Proximity Operators
	3.2.3.3.5 Modifiers
	3.2.3.3.6 Other Verity Features

	3.2.3.4 Documentum Full-Text Search Keywords

	3.3 How To Process Collections
	3.3.1 Basic Collection Processing
	3.3.2 Tracing For Open Collections
	3.3.3 Calculating The Size Of Collections
	3.3.4 Recursive Processing Of Collections
	3.3.5 Processing Collections With Unknown Content

	3.4 Useful Queries
	3.4.1 Full-Text Queries
	3.4.1.1 Basic Single-Word Search
	3.4.1.2 Basic Multi-Word Search
	3.4.1.3 Search For A Phrase
	3.4.1.4 Search For Words Near Each Other
	3.4.1.5 Search For Words In The Same Paragraph
	3.4.1.6 Find A Particular Object In The Full-Text Index
	3.4.1.7 Find An Attribute Value

	3.4.2 Full-Text Index Queries
	3.4.2.1 Find All Objects In The Full-Text Index
	3.4.2.2 Counting The Number Of Objects In The Full-Text Index
	3.4.2.3 Determine If An Object Type Can Be Full-Text Indexed
	3.4.2.4 Mark An Object For Full-Text Indexing
	3.4.2.5 Find Objects That Passed Indexing
	3.4.2.6 Find Objects That Failed Indexing
	3.4.2.7 Find Objects Pending Indexing

	3.4.3 Registered Table Queries
	3.4.3.1 Register A Table
	3.4.3.2 Unregister A Table
	3.4.3.3 Registered Table Permissions
	3.4.3.4 Insert Into A Registered Table

	3.4.4 Virtual Document Queries
	3.4.4.1 Find Virtual Documents
	3.4.4.2 Find The Number Of Components In A Virtual Document
	3.4.4.3 Find Components Of A Virtual Document
	3.4.4.4 Find An Object's Virtual Document Parent

	3.4.5 Workflow Queries
	3.4.5.1 Get Workflow For Specific Object
	3.4.5.2 Get All Active Workflows
	3.4.5.3 Get Workflow Information
	3.4.5.4 Get Activities Information
	3.4.5.5 Get Packages Information
	3.4.5.6 Get Components
	3.4.5.7 Get Components Information
	3.4.5.8 Get Activity Performers
	3.4.5.9 Determine Who Has An Object
	3.4.5.10 Get The Id Of An Object In A Workflow Package

	3.4.6 Inbox Queries
	3.4.6.1 Check For Inbox Notifications
	3.4.6.2 Get Inbox Notifications
	3.4.6.3 Delete Inbox Notifications

	3.4.7 Object Queries
	3.4.7.1 Find All Objects With The Same Root Object
	3.4.7.2 Find Your Locked Objects
	3.4.7.3 Unlock A Locked Object
	3.4.7.4 Unlock All Locked Objects

	3.4.8 Content, Cabinet, and Folder Queries
	3.4.8.1 Determine The Content Size Of A Cabinet (Method I)
	3.4.8.2 Determine The Content Size Of A Cabinet (Method II)
	3.4.8.3 Find Deleted Content
	3.4.8.4 Find Folder Paths From An Object Id

	3.4.9 Setting Up Indexes

	3.5 Chapter Summary

	4 Implementing Core Document Management Functions
	4.1 Implementing Library Functions With The DFC
	4.1.1 Creating Objects
	4.1.1.1 Creating Objects With Content And Location
	4.1.1.2 Creating Object Content From A Variable
	4.1.1.3 Creating An Object From A Template

	4.1.2 Deleting Objects
	4.1.2.1 Deleting Collections Of Objects
	4.1.2.2 Deep Delete

	4.1.3 Copying Objects
	4.1.3.1 Deep Copy

	4.1.4 Checking Out And Editing Objects
	4.1.5 Viewing Objects
	4.1.6 Canceling A Checkout
	4.1.7 Checking In Objects

	4.2 Implementing Library Functions With DFC Operation Classes
	4.2.1 Overview Of Using Operations
	4.2.2 Creating And Viewing Objects
	4.2.3 Deleting Objects
	4.2.4 Copying Objects
	4.2.5 Checking Out And Editing Objects
	4.2.6 Canceling Checkout Of Objects
	4.2.7 Checking In Objects
	4.2.8 Implementing An Operation Monitor
	4.2.9 Processing An Operation Abort

	4.3 Chapter Summary

	5 Proven Solutions For Common Tasks
	5.1 Login Using The DFC
	5.2 Login Using The Login Manager
	5.3 Passing A Session To A Form
	5.4 Session Locking
	5.5 A Non-blocking Visual Basic sleep() Function
	5.6 Running Documentum Components
	5.7 Error Trapping
	5.8 Tracing
	5.8.1 Client-Side Tracing
	5.8.1.1 Properties Screen Of The Documentum Desktop
	5.8.1.2 DMCL.INI File
	5.8.1.3 Programmatically
	5.8.1.3.1 API
	5.8.1.3.2 DFC

	5.8.2 Server-Side Tracing
	5.8.2.1 Server Startup Command Line
	5.8.2.2 API

	5.8.3 Custom Tracing

	5.9 Auditing
	5.10 Using The Progress Sentinel
	5.11 Using The Registry
	5.11.1 Accessing The Registry
	5.11.2 Accessing Checked Out Files
	5.11.3 Enumerating Subkeys

	5.12 Creating A Documentum Resource Locator
	5.13 Sending E-Mail From A Documentum Desktop Application
	5.14 Finding The Folder Path From An Object Id
	5.15 Creating Docbase Paths
	5.16 Working With The Inbox
	5.17 Dumping And Loading The Docbase
	5.17.1 Dump
	5.17.2 Load

	5.18 Implementing A Simple Search Form
	5.18.1 The Form
	5.18.2 The Code
	5.18.3 The Results

	5.19 Chapter Summary

	6 Working With Screen Controls
	6.1 Documentum Validation Controls
	6.1.1 Referencing Validation Controls In Your Visual Basic Project
	6.1.2 Example Of Documentum Validation Controls

	6.2 Docbase-Aware Controls
	6.2.1 Referencing Docbase-Aware Controls In Your Visual Basic Project
	6.2.2 Example Of Docbase-Aware Controls
	6.2.3 The Documentum Open Dialog

	6.3 Visual Basic Controls
	6.3.1 Referencing Microsoft Controls In Your Project
	6.3.2 Example Of Emulating Validation And Docbase-Aware Controls
	6.3.2.1 State TextBox
	6.3.2.2 Users ComboBox
	6.3.2.3 Region ComboBox
	6.3.2.4 Command Buttons
	6.3.2.5 Docbase Browser TreeView
	6.3.2.5.1 Load The TreeView
	6.3.2.5.2 Expand TreeView Node
	6.3.2.5.3 Collapse TreeView Node
	6.3.2.5.4 Click Event Handler

	6.4 The Object Selector Form
	6.4.1 The Form
	6.4.2 The Code
	6.4.3 Using The Form

	6.5 Chapter Summary

	7 Tips, Tools and Handy Information
	7.1 The Documentum API
	7.1.1 dmAPIExec()
	7.1.2 dmAPIGet()
	7.1.3 dmAPISet()

	7.2 The Documentum API from the DFC
	7.2.1 apiExec()
	7.2.2 apiGet()
	7.2.3 apiSet()

	7.3 The Interactive Message Tester
	7.4 The iAPI32 and iDQL32 Command Line Utilities
	7.5 Samson
	7.6 Resetting The Documentum Desktop
	7.7 Clearing The Client-Side Caches
	7.8 Anatomy Of The dmcl.ini File
	7.8.1 Backup DocBroker
	7.8.2 Client-Side Cache Size
	7.8.3 Local Path
	7.8.4 Batch Hint Size
	7.8.5 Compression
	7.8.6 Cached Queries
	7.8.7 Tracing

	7.9 Anatomy Of The r_object_id
	7.10 Object Type Identifiers
	7.11 Attribute Data Types
	7.12 Computed Attributes
	7.13 Format Types
	7.14 Object Permissions
	7.15 Registered Table Permissions
	7.16 Verity KeyView File Filters
	7.17 Menu Command State Flags
	7.18 Uninstalling DocApps
	7.19 Server Error Files
	7.20 Anatomy Of The server.ini File
	7.20.1 Enforce a Four Digit Year
	7.20.2 Client Session Timeout Period
	7.20.3 Concurrent Sessions
	7.20.4 Login Ticket Timeout Period
	7.20.5 Mail Notification
	7.20.6 User Authentication Case
	7.20.7 Workflow Agent Sleep Interval

	7.21 Chapter Summary

	8 Putting It All Together In A Sample Application
	8.1 dmSpy
	8.1.1 The Form
	8.1.2 The Code
	8.1.2.1 The mainSpy.bas Module
	8.1.2.2 The frmSpy.frm Form
	8.1.2.2.1 Form_Load()
	8.1.2.2.2 Select Object Button
	8.1.2.2.3 Dump Attrs Button
	8.1.2.2.4 Dump Comp. Attrs Button
	8.1.2.2.5 Locations Button
	8.1.2.2.6 Run Query Button
	8.1.2.2.7 Exit Button
	8.1.2.2.8 Miscellaneous Subroutines

	8.1.3 Using dmSpy

	8.2 Chapter Summary

