
FIND SIMILAR DOCUMENTS
WITHOUT USING A FULL TEXT INDEX

M. Scott Roth
Director of Technology,
Armedia, LLC
scott.roth@armedia.com

mailto:scott.roth@armedia.com

2014 EMC Proven Professional Knowledge Sharing 2

Table of Contents

1 Introduction .. 4
2 Calculating and Evaluating the Similarity Index .. 5

2.1 The SimHash Algorithm ... 5

2.2 Comparing SimHash Values .. 7

3 Implementation in Documentum ... 8
3.1 Overview .. 8

3.2 The SI Aspect .. 9

3.2.1 getSimHashValue() ..10

3.2.2 computeSimHashValue() ...11

3.2.3 isSimilar(String, double) ...12

3.2.4 getSimilarity(String)..12

3.2.5 findSimilarObjects(double) ...13

3.2.6 Composer Configurations ..14

3.3 The SI Database View ..17

3.3.1 Determine Documentum SI Aspect Table ..17

3.3.2 Create SQL Hamming Distance Function ..17

3.3.3 Define si_view Database View ...18

3.3.4 Register Table in Documentum ..19

3.4 SI Webtop Components ..20

3.4.1 JSP File ...21

3.4.2 WDK Component Implementation Class ..21

3.5 Similarity Index Installation ..24

3.5.1 Aspect..24

3.5.2 Database ...25

3.5.3 Webtop Component Deployment ...25

3.6 Testing ..26

3.6.1 Loading Test Content ...26

3.6.2 Database Test ...26

3.6.3 Find Similar UI Test ...27

2014 EMC Proven Professional Knowledge Sharing 3

3.6.4 Results...27

4 Conclusion ..30
5 Get the Source Code ...32
6 Acknowledgements ...32
7 About the Author ...32
8 References ..33

Disclaimer: The views, processes, or methodologies published in this article are those of the

author. They do not necessarily reflect EMC Corporation’s views, processes, or methodologies.

2014 EMC Proven Professional Knowledge Sharing 4

1 Introduction

Recently, an intriguing question was raised in the Documentum® Developer Forum of the EMC

Community Network (ECN). The gist of the question was: during the checkin of a document, is

there a quick and easy way to determine if a similar document already exists in the repository

[1]? This really got me thinking. If the question had been: is there a way to determine if an exact

duplicate of a document exists in the repository, the answer would be “yes”. This determination

could be made by subjecting every document in the repository to a cryptographic hash function

(message digest) such as MD5 or SHA-1, saving the hash value as metadata, and looking for

identical hash values upon checkin. However, because the questioner was interested in “similar”

documents, cryptographic hashes were not the solution. Cryptographic hash functions are

designed to detect the slightest perturbation of content and produce radically different hash

values [2]. Therefore, even similar documents would produce radically different hash values

whose comparison would not indicate similarity. So, how could similarity among documents in a

repository be detected?

One approach would be to use the Lucene MoreLikeThis API. The MoreLikeThis API

extracts salient words from a selected document and uses them to construct a full text query

against its indexes [3]. Since xPlore employs the Lucene engine, this approach might be

possible, but would obviously require some modification to Webtop and xPlore to implement it.

In addition, constructing and executing the query could take considerable time during a checkin.

I like the notion of a hash value that represents the primary characteristics of a document and

could be saved as metadata in the repository. You could then query the repository for all

documents that were ±10% of a known hash value and call those documents “similar”. Such a

value would allow the detection of similar documents in repositories not using xPlore (or

Lucene, or FAST), and could easily be implemented with an Aspect. The hash value would be

the product of a different kind of hashing function where slight differences in content are

ignored, and primary characteristics are highlighted. I call this value the similarity index, SI, of

content.

My vision for the use of the SI in a content management system (specifically, Documentum) is

represented by the following pseudo code query statement:

2014 EMC Proven Professional Knowledge Sharing 5

select object_id from object_type where

similarity(SI_value,[SI]) >= 80%

Here, SI_value is the Documentum object attribute name holding a 64-bit SI value, [SI] is a

known SI value (e.g. the SI value for a document being checked in), and the similarity()

function performs a simple comparison of the two values to determine similarity. In this case, the

query returns all documents that are 80% (or more) similar to the document represented by

[SI].

With a simple query statement like this, one could easily return a list of all similar documents in

a repository upon checkin. At that point, the content management system could do a number of

things such as: alert the user of similar content, ask the user to verify that their content is

different, use this information to classify the document, apply additional keywords based upon

the key words of the similar documents, etc.

This article will briefly explain the SimHash algorithm used to create SI values, and the novel

implementation of a solution for identifying similarity among documents in a Documentum

repository, without the aid of a full text search engine. As explained in the following pages, the

solution involves an Aspect and its unique relationship with a database view to determine

similarity. The solution can be leveraged in SQL or DQL, or in a simple Webtop customization.

2 Calculating and Evaluating the Similarity Index

Before diving into the Documentum implementation of this solution, a little background is

necessary to understand how the SI hash values are generated and how they are evaluated in

relation to one another to determine similarity.

2.1 The SimHash Algorithm

The algorithm that produces the 64-bit hash that can be evaluated in the manner envisioned is

called SimHashi. The SimHash algorithm is a locality-sensitive hashing algorithm developed by

Moses Charikar in 2002 [4]. Locality-sensitive simply means that instead of the algorithm being

sensitive to variations in the input stream like a cryptographic hashing algorithm (e.g. MD5,

SHA-1, etc.), it ignores variations (to a degree) and groups similar content together. This

2014 EMC Proven Professional Knowledge Sharing 6

concept is similar to data clustering which endeavors to group objects together that share a

similar attribute. In this case, the grouping occurs via 64-bit hash value.

SimHash works by breaking the input string into k-gramsii and producing a fixed-sized shingleiii

for each k-gram. The size of the shingle is the same size as the final hash, in this case, 64-bits.

Each bit position of each shingle is reviewediv. If the bit at shingle[i] is set (i.e. 1), then the

same bit position in a temporary vector, V[i], is incremented by 1. If the bit at shingle[i] is

not set (i.e. 0), then V[i] is decremented by 1. Once the entire input has been evaluated, the

SimHash is calculated by reviewing the temporary vector, V. If the bit at V[i] is greater than 0,

then the bit at H[i] (the final SimHash value) is set to 1, else it is set to 0. The result of this

process is a 64-bit binary number.

Table 1 contains a pseudo-code representation of the SimHash process [5].

Table 1 SimHash Pseudo-code

1. Produce a set of shingles (S) for the input.

2. Initialize a temporary vector (V), 64-bits in size, containing all zeroes.

3. For each shingle (s) in set S, if s[i] is 1 (where i = bit position), then increment V[i]. If s[i]

is 0, decrement V[i].

4. Initialize the SimHash vector (H), 64-bits in size, containing all zeroes.

5. After processing all of the shingles in S, evaluate the temporary vector, V: if V[i] > 0,

then H[i] = 1, else H[i] = 0.

6. The resulting binary number represented by vector H is the SimHash value.

Table 2 contains a simple example of the SimHash algorithm in action. To conserve space, I

used a 16-bit V and H, and a 3-bit k-gram. To produce the shingles, I simply summed the ASCII

values of the characters in the k-grams (this is not a recommended hashing technique for real-

world usage, but serves well for this example). Each row in the table represents a successive

loop in the algorithm (i.e. step 3 in the pseudo-code above). The input string was “Hello world”.

2014 EMC Proven Professional Knowledge Sharing 7

Table 2 SimHash Example

The resulting SimHash value is: H = 0000000100001111 = 271 (decimal)

2.2 Comparing SimHash Values

SimHash values can be compared as integer numbers or as binary numbers to determine

similarity. Because the SimHash algorithm could place a 1 in the left-most bit of the binary hash

number (forcing the decimal representation of that number to be negative), the preferred

method to compare SimHash values is to use the Hamming Distance [6]. Simply comparing

these numbers based upon their decimal values could misrepresent their similarity due to

differing cardinality caused by that first bit. The Hamming Distance avoids this problem by

simply identifying the number of bits that differ between the binary representations of two

hashes. Table 3 provides an example of comparing two SimHash values using the Hamming

Distance.

Table 3 Hamming Distance Example

File 1 hash: 1010001111011011111100110100111101110110111010100000010100010000

File 2 hash: 1010001110011011111110000101111101110110111010100001010100010000

Bit differences: 1 1 11 1 1

The Hamming Distance between File 1 and File 2 in Table 3 is 6. Expressed as a percentage of

the length of the hash value, the two SimHash values are only 9% different (6/64=0.09375), or

91% similar! Therefore, the lower the Hamming Distance, the more similar the files.

2014 EMC Proven Professional Knowledge Sharing 8

3 Implementation in Documentum

Now that you understand the basics of SimHash and Hamming Distances, let me explain how

these concepts can be applied in a Documentum repository to identify similar documents. The

implementation involves the use of an Aspect, a database view, and a few WDK components.

This implementation was developed and tested on Documentum 7 using Microsoft SQL Server

2012.

3.1 Overview

The implementation described here leverages a unique relationship between an Aspect and a

database view. Figure 1 depicts a general, high-level representation of how the key components

of the implementation work. The SIAspect Aspect holds both the SI value and all the

functionality necessary to generate it, compare it with other SI values, and find similar objects.

The beauty of putting this data and behavior in an Aspect, as opposed to a Type-Based

Business Object (TBO), is that the Aspect can be attached to any instance of an object in the

repository, regardless of its type. This means the capability to identify similar content can easily

be layered into an existing repository without having to change any of the existing type

definitions.

Key to the SIAspect’s ability to find similar content is the si_view database view. The

si_view is a database view that catalogs all objects in the repository with the SIAspect

attached and calculates their Hamming Distances. The SIAspect is able to manage all

features of the SI implementation except the ability to find similar objects directly. For this

feature, the SIAspect must utilize the si_view database view. In this regard, the SIAspect

and the si_view database view are inextricably bound. As you will see later, the si_view is

also available for use by other components in the system.

To better illustrate the relationships among the components in the solution, let’s walk through a

hypothetical scenario. To start, let’s checkin a few drafts of Lincoln’s Gettysburg Address to a

Documentum repository, and apply the SIAspect. Table 4 contains the details.

2014 EMC Proven Professional Knowledge Sharing 9

Figure 1 Similarity Index Implementation Overview

Now, suppose we are interested in finding all of the drafts of the Gettysburg Address. Start by

selecting the Gettysburg_Address_FINAL.txt object and ask the repository to return all

documents that are 80% similar to it. The Aspect uses the selected object’s si_value to query

the si_view database table. The si_view dynamically builds a combinatorial table that

contains all of the r_object_ids and si_values for all of the objects in the repository that

have the SIAspect attached. It then determines the distances among all these entries and

converts those distances to percentages. The si_view then returns to the Aspect a list of

r_object_ids for similar objects in the repository.

Table 4 Gettysburg Address Example

3.2 The SI Aspect

Like any Aspect in Documentum, the SI Aspect was implemented using a class file, an interface

file, a type definition in Composer, and some supporting JARs and libraries. Specifically, the SI

2014 EMC Proven Professional Knowledge Sharing 10

Aspect was implemented in the SIAspect class and ISIAspect interface files. The

si_aspect_type was defined in Composer to contain the si_value attribute.

Table 5 contains the method prototypes defined in the ISIApsect interface file. As you can

see, of the ten methods defined, there are really only five unique methods; the others are

overloads of these five. The following five base methods will be discussed in greater detail:

 String getSimHashValue()

 void computeSimHashValue()

 boolean isSimilar(String, double)

 double getSimilarity(String)

 ArrayList<String> findSimilarObjects(double)

You can examine the remaining methods at your leisure in the source code archive (see Section

5).

Table 5 ISIAspect Interface File

public interface ISIAspect {

 public String getSimHashValue() throws DfException;

 public void computeSimHashValue() throws DfException;

 public boolean isSimilar(String si_value, double threshold)

 throws DfException;

 public boolean isSimilar(String si_value) throws DfException;

 public boolean isSimilar(IDfSysObject sObj) throws DfException;

 public boolean isSimilar(IDfSysObject sObj, double threshold)

 throws DfException;

 public double getSimilarity(String si_value) throws DfException;

 public double getSimilarity(IDfSysObject sObj) throws DfException;

 public ArrayList<IDfSysObject> findSimilarObjects(double threshold)

 throws DfException;

 public ArrayList<IDfSysObject> findSimilarObjects() throws DfException;

}

3.2.1 getSimHashValue()

This method simply returns an object’s SimHash value as a String. Table 6 contains the code

for this method. Notice that the Aspect name is pre-pended to the attribute name when it is

retrieved via the DFC.

2014 EMC Proven Professional Knowledge Sharing 11

Table 6 getSimHashValue() Implementation

private static final String SI_ASPECT_NAME = "si_aspect";

private static final String SI_ASPECT_ATTR_NAME = SI_ASPECT_NAME +

 ".si_value";

public String getSimHashValue() throws DfException {

 return this.getString(SI_ASPECT_ATTR_NAME);

}

3.2.2 computeSimHashValue()

The computeSimHashValue() method sets the Aspect’s si_value attribute by computing

the SimHash using the SimHash class from the CommonCrawl project [7]. (The SimHash class

utilizes classes in the guava [8] and fastutil [9] libraries.) Table 7 contains the code for this

method. Again, note the use of the fully qualified attribute name in the DFC setString()

method.

In this code, the SimHash value is calculated by sending the content of the object to the

SimHash method as a String. The SimHash method returns the SimHash value as a 64-bit

binary number rendered as a String.

Table 7 computeSimHashValue() Implementation

private static final String SI_ASPECT_NAME = "si_aspect";

private static final String SI_ASPECT_ATTR_NAME = SI_ASPECT_NAME +

 ".si_value";

public void computeSimHashValue() throws DfException {

 this.setString(SI_ASPECT_ATTR_NAME,computeSimHash());

}

private String computeSimHash() throws DfException {

 if (this.getContentSize() > 0) {

 ByteArrayInputStream content = this.getContent();

 DfClientX cx = new DfClientX();

 String string1 = cx.ByteArrayInputStreamToString(content);

 return pad(Long.toBinaryString(

 SimHash.computeOptimizedSimHashForString(string1)),

 SimHash.HASH_SIZE);

 } else {

 return null;

 }

}

2014 EMC Proven Professional Knowledge Sharing 12

3.2.3 isSimilar(String, double)

Table 8 contains the code for the isSimilar() method. All of the isSimilar() overloads

eventually call this method. This method takes a String, representing the SimHash value to

compare with this object, and a threshold value as a double. For example, a threshold of 0.80

will only return true if the two objects are 80% similar (or greater). Similarity is determined by

comparing the Hamming Distance between the two SimHash values. This comparison takes

place in the getSimilarity() method discussed in Section 3.2.4.

Table 8 isSimilar() Implementation

public boolean isSimilar(String si_value, double threshold) throws

DfException {

 double sim = getSimilarity(si_value);

 if (sim >= threshold)

 return true;

 else

 return false;

}

3.2.4 getSimilarity(String)

The getSimilarity() method (see Table 9) return the similarity between two objects as a

percent of the overall hash length. This method utilizes the Hamming Distance calculation

implemented in the SimHash class of the CommonCrawl project [7].

Table 9 getSimilarity() Implementation

public double getSimilarity(String si_value) throws DfException {

 int distance = getDistance(getSimHashValue(),si_value);

 return (((double) (SimHash.HASH_SIZE - distance)/(double)

 SimHash.HASH_SIZE));

}

private int getDistance(String s1, String s2) {

 long l1 = new BigInteger(s1, 2).longValue();

 long l2 = new BigInteger(s2, 2).longValue();

 return SimHash.hammingDistance(l1,l2);

}

2014 EMC Proven Professional Knowledge Sharing 13

3.2.5 findSimilarObjects(double)

The findSimilarObjects() method returns an ArrayList<IDfSysObject> of objects

similar to this object (see Table 10). The double parameter represents the threshold for

determining similarity. For example, a 0.80 threshold will return only objects which are 80% or

greater in similarity to this object. The default threshold is 0.80, so if the overloaded method

findSimilarObjects() is called, 0.80 is passed as the threshold value.

Table 10 findSimilarObjects() Implementation

private static final String SI_VIEW_TABLE = "dbo.si_view";

private static final String SI_VIEW_SIMILARITY = "similarity";

private static final String SI_VIEW_SIMILAR_OBJ_ID = "similar_obj_id";

private static final String SI_VIEW_THIS_INDEX = "r_object_id";

private static final String FIND_SIMILAR_QUERY = "select " +

 SI_VIEW_SIMILAR_OBJ_ID + " from " + SI_VIEW_TABLE + " where " +

 SI_VIEW_THIS_INDEX + " = '%s' and " + SI_VIEW_SIMILARITY + " >= %s";

public ArrayList<IDfSysObject> findSimilarObjects(double threshold) throws

 DfException {

 IDfCollection col = null;

 ArrayList<IDfSysObject> results = new ArrayList<IDfSysObject>();

 try {

 IDfQuery q = new DfQuery();

 String dql = String.format(FIND_SIMILAR_QUERY,

 this.getObjectId().toString(),Double.toString(threshold));

 q.setDQL(dql);

 col = q.execute(this.getSession(),DfQuery.DF_READ_QUERY);

 while (col.next()) {

 IDfSysObject sObj = (IDfSysObject) getSession().getObject(

 new DfId(col.getString(SI_VIEW_SIMILAR_OBJ_ID)));

 if (sObj != null)

 results.add(sObj);

 }

 } catch (DfException e) {

 throw new DfException(e);

 } finally {

 if (col != null)

 col.close();

 }

 return results;

}

This is the method that leverages the si_view database view. The si_view database view is

discussed in greater detail in Section 3.3, but as you can see in the code, similar objects are

identified by a query of the form depicted in Table 11.

2014 EMC Proven Professional Knowledge Sharing 14

Table 11 Find Similar Query

select similar_obj_id

from dbo.si_view

where r_object_id = ‘[the r_object_id for this object]’ and

 similarity >= [the threshold value]

3.2.6 Composer Configurations

The next step in implementing the SI capability in a repository is to create the necessary

Composer objects for the Aspect. This section is not meant to be a tutorial on creating Aspects

using Composer; rather, it will simply highlight the configurations necessary to implement the SI

Aspect. There are four primary configurations that need to be made to implement and deploy

the SI Aspect: a type definition, a module definition, JAR definitions, and a library. Figure 2

depicts these configuration objects in the Composer project.

3.2.6.1 Type Definition

The SI Aspect utilizes a type definition to define the si_value attribute. This type is defined in

the Types folder as an Aspect Type with the following characteristics:

 Name: si_aspect

 Attribute: si_value; String(64); default = 0

3.2.6.2 JAR Definitions

The second configuration is the definition of the JAR files that contain the SI Aspect, its interface

file, and its libraries. The five JAR Definitions are defined as follows:

 Name: fastutil

o Type: Implementation

o File: fastutil-5.0.9.jar [9]

 Name: guava

o Type: Implementation

o File: guava-14.0.1.jar [8]

2014 EMC Proven Professional Knowledge Sharing 15

Figure 2 Composer Project

 Name: ISIAspect

o Type: Interface

o File: ISIAspect.jar

o JAR Contents:

 ISIAspect.class

 Name: SIAspect

o Type: Implementation

o File: SIAspect.jar

o JAR Contents:

2014 EMC Proven Professional Knowledge Sharing 16

 SIAspect.class

 Name: SIAspectSupport

o Type: Implementation

o File: SIAspectSupport.jar

o JAR Contents:

 SimHash.class,

 Shingle.class,

 MurmurHash.class,

 FPGenerator.class [7]

3.2.6.3 Java Libraries

The Java Library, SIAspectLib, includes the following JAR Definitions:

 fastutil [9]

 guava [8]

This library should be downloaded with the SIAspect when it runs. However, I found this not to

be the case and had to install the JAR files in the web application’s /lib folder. Section 3.5.3

discusses deploying the SI solution to the web application server.

3.2.6.4 Module Definition

Finally, the definition of the Aspect itself is contained in the Modules folder.

 Name: si_aspect

 Type: Aspect

 Implementation JARS:

o SIAspect

o SIAspectSupport

 Class Name: com.dm_misc.similarity.SIAspect

 Interface JARS:

o ISIAspect

2014 EMC Proven Professional Knowledge Sharing 17

3.3 The SI Database View

The workhorse of this implementation is the database view, si_view. This database view is

constructed using a database client and is then registered with Documentum so the SIAspect

can access it. In order to construct the si_view database view, you must first determine the

name of the table in Documentum that stores the SI values for the Aspect, and implement a

Hamming Distance function in SQL.

3.3.1 Determine Documentum SI Aspect Table

Documentum stores Aspect metadata in database tables just like any other metadata. The

queryv in Table 12 identifies the database table in which the SIAspect metadata is stored [10].

(This assumes the Aspect has been deployed as described in Section 3.5.1.)

Table 12 SQL to Determine Aspect Table Name

select a.i_attr_def as tbl

from dmc_aspect_type_s a,

 dm_sysobject_s s

where s.r_object_id = a.r_object_id and

 s.object_name = 'si_aspect'

The result of this query will be a table named similar to dmi_0301e45380000259. This table

name is used in Section 3.3.3 when constructing the si_view database view.

3.3.2 Create SQL Hamming Distance Function

The si_view database view requires the use of a custom SQL function to compute Hamming

Distances. The SQLvi to create the Hamming Distance function, HamDist(), is contained in

Table 13 [11]. This function must be created in the Documentum repository database as the

repository owner.

2014 EMC Proven Professional Knowledge Sharing 18

Table 13 SQL Hamming Distance Function

create function dbo.HamDist(@value1 char(64), @value2 char(64))

returns int

as

begin

 declare @distance int

 declare @i int

 declare @len int

 select @distance = 0,

 @i = 1,

 @len = case when len(@value1) > len(@value2)

 then len(@value1)

 else len(@value2) end

 if (@value1 is null) or (@value2 is null)

 return null

 while (@i <= @len)

 select @distance = @distance +

 case when substring(@value1,@i,1) != substring(@value2,@i,1)

 then 1

 else 0 end,

 @i = @i +1

 return @distance

end

3.3.3 Define si_view Database View

The SQL in Table 14 creates the si_view database view that compares every object in the

repository with the SIAspect attached, to every other object in the repository with the

SIAspect attached. In this way, it can compute the Hamming Distance and the similarity

between each object. This view creates a combinatorial view of the SIAspect data, and can be

very large. The size of the table can be computed as n!/(2!(n-2)!), [12] where n is the

number of objects that have the SI Aspect attached. However, to reduce the number of rows in

the view, the SQL only selects objects whose similarity is 70%vii or greater. For example, my

test repository contained 1,279 objects with the SIAspect attached, and resulted in a si_view

database view with 21,864 rows (as opposed to the expectation of 817,281 if you use the

formula above).

Essentially, this view is constructed by choosing an object, searching for all objects that meet

the similarity criteria (i.e. 70% or greater), and entering their metadata in the view. The process

is repeated for the next object and so on. If you look at the resulting view data, you will see that

2014 EMC Proven Professional Knowledge Sharing 19

the r_object_id column is held constant while the values in the similar_obj_id column

vary. This view must also be created in the Documentum repository database as the repository

owner.

Table 14 SQL to Create si_view Database View

create view dbo.si_view

as

 select a.r_object_id,

 a.si_value as si1,

 b.r_object_id as similar_obj_id,

 b.si_value as si2,

 dbo.HamDist(a.si_value, b.si_value) as distance,

 (64.0 - dbo.HamDist(a.si_value, b.si_value)) / 64 as similarity

from [dmi_table_name]_s as a

 inner join [dmi_table_name]_s as b

 on a.r_object_id <> b.r_object_id

where (a.si_value <> '') and (b.si_value <> '') and

 ((64.0 - dbo.HamDist(a.si_value, b.si_value)) / 64 >= 0.7)

Where [dmi_table_name] is the name of the table containing the SIAspect metadata

determined in Section 3.3.1 (Table 12).

3.3.4 Register Table in Documentum

The final step in tying together the SIAspect with the empowering si_view database view is

to register the si_view with Documentum. Registration of external database tables (and views)

with the Content Server allows these tables to be accessed via DQL as if they were native

Documentum tables. Table 15 contains the simple DQL to register the si_view database view

with Documentum. Register the table from the Documentum Administrator (DA) as the

repository owner.

Table 15 DQL to Register si_view Database View

register table dm_dbo.si_view (r_object_id string (16),

 si1 string (64),

 similar_obj_id string (16),

 si2 string (64),

 difference int,

 similarity double)

2014 EMC Proven Professional Knowledge Sharing 20

By default, Documentum only allows the registered table owner access to the table. Therefore,

update the permissions for the registered table to grant everyone READ access to the view by

using the DQL in Table 16.

Table 16 DQL to Update Registered Table Permissions

update dm_registered object

 set world_table_permit = 3

where object_name = 'si_view'

3.4 SI Webtop Components

With the implementation of the Aspect and database components in Sections 0 and 3.3, the

foundational elements of the solution are complete. To expose the capability of finding similar

documents to the user, I developed a simple Find Similar WDK interface for Webtop (see Figure

3).

Figure 3 FindSimilar Webtop Interface

This simple interface is invoked by selecting an object in the Webtop work area, and clicking the

Tools -> Find Similar menu option. The result is a modal dialog listing the objects that are

similar to the one selected in the Webtop work area. The default threshold of 80% is used to

determine similarity.

2014 EMC Proven Professional Knowledge Sharing 21

The Webtop component implementation class, findSimilar (see Section 3.4.2), leverages

the SIAspect attached to the selected object to find similar objects by using the

findSimilarObjects() method discussed in Section 3.2.5. If the selected object does not

have the SIAspect attached, it is attached automatically and the SI calculated. If the object

has no content, a message is returned to the modal dialog with no results.

I am only going to discuss the JSP file and the component implementation class here to

demonstrate how to use and access the SI Aspect. You can review the remainder of the

implementation files yourself.

3.4.1 JSP File

As depicted in Figure 3, the JSP for the findSimilar WDK component is pretty basic. It

contains the following controls which are addressed by the implementation class:

 <dmf:label name = “SI_THRESHOLD”>

 <dmf:label name = “OBJECT_NAME”>

 <dmf:label name = “OBJECT_ID”>

 <dmf:label name = “SI_VALUE”>

 <dmf:datagrid name = “SI_LIST”>

 <dmf:label name = “MSG”>

There are some additional details in the JSPcode, but this should suffice for our discussion

here.

3.4.2 WDK Component Implementation Class

The findSimilar WDK component code is shown in Table 17. The component overrides the

base class Component.onInit() method so that as soon as the component is called, the

code goes to work finding similar objects in the repository.

The most interesting parts of the code I have flagged as #1, #2, and #3. The remainder of the

code handles updating the datagrid and labels on the JSP page [13].

2014 EMC Proven Professional Knowledge Sharing 22

Table 17 findSimilar.java Implementation

public void onInit(ArgumentList args) {

 super.onInit(args);

 try {

 // get the object

 String objectId = getInitArgs().get("objectId");

 IDfSysObject sObj = (IDfSysObject) getSession().getObject(

 new DfId(objectId));

 // check for content

 if (sObj.getContentSize() > 0) {

 // --- #1 ---

 // check for aspect - attach if needed

 if (!hasAspect(sObj,"si_aspect")) {

 // attach aspect

 ((IDfAspects) sObj).attachAspect("si_aspect", null);

 sObj.save();

 // must re-fetch the object for the aspect to take affect

 sObj = (IDfSysObject) getSession().getObject(

 sObj.getObjectId());

 }

 // get si value

 ((ISIAspect) sObj).computeSimHashValue();

 // must save again to persist the SimHash

 sObj.save();

 // --- #2 ---

 si_value = ((ISIAspect) sObj).getSimHashValue();

 // --- #3 ---

 // set similar list

 ArrayList<IDfSysObject> simList = ((ISIAspect) sObj).

 findSimilarObjects();

 // initialize the JSP datagrid

 String[] columnHeaders = new String[] {

 "r_object_id",

 "object_name",

 "similarity",

 "si_value",

 "path" };

 // create new table result set

 TableResultSet trs = new TableResultSet

 (columnHeaders);

 // loop over SI ArrayList and set column values

 for (IDfSysObject sObj2: simList) {

 String[] tableRow = new String[5];

 tableRow[0] = sObj2.getObjectId().toString();

2014 EMC Proven Professional Knowledge Sharing 23

 tableRow[1] = sObj2.getObjectName();

 tableRow[2] = ((ISIAspect) sObj).

 getSimilarity(sObj2)*100 + "%";

 tableRow[3] = sObj2.getString("si_aspect.si_value");

 tableRow[4] = sObj2.getPath(0);

 }

 // if no results set columns to empty

 if (trs.getResultsCount() == 0) {

 String[] tableRow = new String[5];

 tableRow[0] = "No Results";

 tableRow[1] = " ";

 tableRow[2] = " ";

 tableRow[3] = " ";

 tableRow[4] = " ";

 }

 // finally, add the row to the table result set

 trs.add(tableRow);

 }

 // update datagrid

 Datagrid dg = (Datagrid) getControl("SI_LIST",Datagrid.class);

 dg.getDataProvider().setDfSession(getDfSession());

 dg.getDataProvider().setScrollableResultSet(

 (ScrollableResultSet) trs);

 } else {

 si_value = "This object has no content.";

 }

 // update the form

 Label threshold = (Label) getControl("SI_THRESHOLD",Label.class);

 threshold.setLabel("80%");

 Label objName = (Label) getControl("OBJECT_NAME",Label.class);

 objName.setLabel(sObj.getObjectName());

 Label objId = (Label) getControl("OBJECT_ID",Label.class);

 objId.setLabel(sObj.getObjectId().toString());

 Label SIvalue= (Label) getControl("SI_VALUE",Label.class);

 SIvalue.setLabel(si_value);

 } catch (DfException e) {

 System.out.println(e.getMessage());

 }

}

1. This if{} block checks whether or not the selected object has the SIAspect attached.

If not, it tries to attach it. Once the Aspect is attached, the dm_sysobject must be re-

fetched from the repository to retrieve the attached Aspect. The SimHash value is then

calculated for the object and saved.

2014 EMC Proven Professional Knowledge Sharing 24

2. The SimHash value is retrieved from the Aspect. Note that to access the Aspect’s

functionality, the sysobject must be cast to the Aspect’s interface type.

3. The list of similar objects is requested from the Aspect using the

SIAspect.findSimilarObjects() method. The resulting ArrayList is processed

and the required metadata is retrieved from each found object and added to the

TableResultSet. After processing all of the objects in the ArrayList, the

TableResultSet is added to the Datagrid.

The remainder of the code should be self-explanatory.

The findSimilar WDK component contains one helper method worth mentioning, and that is

hasAspect(). This method simply queries an object to determine if a particular Aspect is

attached to it. Table 18 contains the code for the hasAspect() method.

Table 18 hasAspect() Method Implementation

private boolean hasAspect(IDfSysObject sObj, String aspect) {

 try {

 IDfList aspectList = ((IDfAspects) sObj).getAspects();

 for (int i=0; i < aspectList.getCount(); i++) {

 if (((String) aspectList.get(i)).equalsIgnoreCase(aspect))

 return true;

 }

 } catch (DfException e) {

 System.out.println(e.getMessage());

 }

 return false;

}

3.5 Similarity Index Installation

Installation of this solution occurs in three primary steps, reflecting the three primary parts of the

solution: the Aspect in the Documentum repository, the database, and the WDK UI components.

See Section 5 for instructions to obtain the complete source code for this solution.

3.5.1 Aspect

The simplest way to install the SIAspect is to install the /bin-dar/SIAspect.dar file

distributed with the Composer project using the DAR Installer. Alternatively, it can be installed

directly from the project source code using Composer.

2014 EMC Proven Professional Knowledge Sharing 25

3.5.2 Database

The installation of the database components can be completed using the scripts contained in

the /sql-dql folder of the Composer project. Please note:

 these scripts cannot be installed from Composer

 these scripts should be installed in the Documentum database

 these scripts should be run as the Documentum repository owner

 these scripts should be run in the order listed

The scripts are:

1. create_HamDist_function.sql – creates the HamDist() function in the database.

This script must be run from an SQL client.

2. get_aspect_table_name.sql – returns the name of the table created to hold the

SIAspect’s SimHash values. You will need to edit the create_si_view.sql script

to include this table name. Run this script from an SQL client only after installing the

SIAspect.

3. create_si_view.sql – creates the si_view database view. Edit this script to

include the name of the table produced by the get_aspect_table_name.sql script

(two places).

4. register_si_view.dql – registers the si_view database view with Documentum.

Run this script from the DQL editor in DA.

3.5.3 Webtop Component Deployment

Deploying the WDK components to implement the Find Similar feature in Webtop involves

simply copying files from the Composer project into the Webtop folder structure on the web

application serverviii as follows:

 /webtop/custom/config/find_similar_actions.xml

 /webtop/custom/config/find_similar_component.xml

 /webtop/custom/config/find_similar_menu_config.xml

 /webtop/custom/find_similar/find_similar.jsp

 /webtop/custom/strings/com/dm_misc/similarity/

SIAspectNLS.properties

2014 EMC Proven Professional Knowledge Sharing 26

 /webtop/WEB-INF/classes/com/dm_misc/similarity/ISIAspect.class

 /webtop/WEB-INF/classes/com/dm_misc/similarity/SIAspect.class

 /webtop/WEB-INF/classes/com/dm_misc/similarity/webtop/

findSimilar.class

 /webtop/WEB-INF/lib/fastutil-5.0.9.jar

 /webtop/WEB-INF/lib/guava-14.0.1.jar

3.6 Testing

With all of the solution’s components in place, you are ready to test the implementation. The first

step will be to load some test content into your repository. This process is discussed in Section

3.6.1. The process of loading test content also performs a few tests whose results are

discussed in Section 3.6.4. Two other types of tests are also discussed here: a database test,

and a UI test.

3.6.1 Loading Test Content

In addition to the code necessary to implement the Similarity Index, one additional class exists

in the Composer project. The LoadTestContent class loads test content into the repository,

attaches the SIAspect, generates the SimHash, and runs tests using known and random

documents.

I won’t go through the details of this class here since it isn’t germane for understanding the

concepts or the implementation of the Similarity Index. However, it is included in the source

code archive, along with the set of test documentsix. The LoadTestContent class can easily

be run from Composer. In its default configuration, it will generate approximatelyx 1,279 files,

import them into the /Temp/SIDocs folder in your Documentum repository, and attach the

SIAspect to them.

3.6.2 Database Test

After loading your repository with test data using the LoadTestContent class discussed in

Section 3.6.1, you can examine the contents of the si_view database view using the query in

Table 19 (from DA). This query should return about 21,864 rows if you loaded your repository

using the LoadTestContent class.

2014 EMC Proven Professional Knowledge Sharing 27

Table 19 si_view Test Query

select * from dbo.si_view where similarity >= 0.7

Notice the view is referenced as ‘dm_dbo.si_view’. To avoid ambiguity, registered tables are

referenced with a fully qualified name. Documentum provides the dm_dbo alias to always point

to the repository owner, regardless of the underlying database system. The si_view database

view is fully accessible from both the database (SQL) and Documentum via the registered table,

and the SI Aspect. To construct a DQL query using the registered table, always reference it

using the dm_dbo prefix as illustrated in Table 19.

3.6.3 Find Similar UI Test

You can also test your deployment by selecting any file in the /Temp/SI Docs folder in

Webtop and selecting the Tools -> Find Similar menu option. Your result should be similar to

those depicted in Figure 3. A good test document is gettysburg.txt, since it has several

variations in the repository that will be identified as similar.

3.6.4 Results

In addition to loading the Documentum repository with test content and attaching the

SIAspect, the LoadTestContent class also does some quick tests on the content. Table 20

contains excerpts of the results generated by executing the LoadTestContent class. Some of

these results are for control files that I purposely choose and modified to represent similar

content; others represent random results from the test corpus.

Table 20 LoadTestContent Results

sw56gu.txt

 [0010101110001010000000000111100111001110011010010010100100101010]

 found 1 similar objects

 sw56gu_dup.txt

 [0010101110001010000000000111100111001110011010010010100100101010]

 >> 1.0

killfile.faq

 [1101100111001010100010101100110111110110110100110111001000011110]

 found 1 similar objects

2014 EMC Proven Professional Knowledge Sharing 28

 killfile_i_25.faq

 [1101100111001010100010101100110111110110110100110111111000011110]

 >> 0.96875

a16.txt

 [1010001110111010010010110001011001110000000110000001110010011110]

 found 3 similar objects

 a16_dup.txt

 [1010001110111010010010110001011001110000000110000001110010011110]

 >> 1.0

 ab88.txt

 [1000001010101010010000110100011000110100000110010001110101011110]

 >> 0.8125

 ba88.txt

 [0010001010111010010010110000011000110000000100010001110101011110]

 >> 0.859375

gettysburg.txt

 [0010111101000111000010110011110111010111101001001100000001000001]

 found 6 similar objects

 getty_d_1.txt

 [0010111101001111000010110011110111010111101001001100000001010001]

 >> 0.96875

 getty_d_10.txt

 [0010110101001111000010110001110111010111101001001100100001000001]

 >> 0.9375

 getty_d_5.txt

 [0010111101000111000010110011110111011111101001001000100001000001]

 >> 0.953125

 getty_i_1.txt

 [0010111101000111000010110111110111010111101001001100000001010001]

 >> 0.96875

 getty_i_10.txt

 [0010111101000111000010110011110111010111101001001100000001010001]

 >> 0.984375

 getty_i_5.txt

 [0010111101001111000010110011110111010111101001001100100001000001]

 >> 0.96875

us-const.txt

 [1111010100011001000011110111100101111010001011110010001010011101]

 found 5 similar objects

 const11.txt

 [1111010100011001000011110111100101111010001011110010001010011101]

 >> 1.0

2014 EMC Proven Professional Knowledge Sharing 29

 us-const_d_10.txt

 [1100010100011001000011110111100101111010001001110010001010011101]

 >> 0.953125

 us-const_d_5.txt

 [1111010100011001000011110111100101111010001001110010001010011101]

 >> 0.984375

 us-const_i_10.txt

 [1111010100011001000011110111100101111010001011110010001010011101]

 >> 1.0

 us-const_i_5.txt

 [1111010100011001000011110111100101111010001011110010001010011101]

 >> 1.0

MS Word file.docx

 [1010010001101010011010001010001011001110101101111010011110000111]

 found 1 similar objects

 MS Word file_dup.docx

 [1010010001101010011010001010001011001110101101111010011110000111]

 >> 1.0

MS Word file_d_10.docx

 [1011110111101001010101011100001111011010000100111111101111000111]

 found 0 similar objects

MS Word file.pdf

 [0100010111111111000001000111111000010001010001011011111110101001]

 found 1 similar objects

 MS Word file_dup.pdf

 [0100010111111111000001000111111000010001010001011011111110101001]

 >> 1.0

MS Word file_d_10.pdf

 [0110010110101111000011000101010000110001101110011111110110001101]

 found 0 similar objects

VaticanStaircase.jpg

 [0001001011110000110011000110001000001011010111001100000111001000]

 found 1 similar objects

 VaticanStaircase_dup.jpg

 [0001001011110000110011000110001000001011010111001100000111001000]

 >> 1.0

In Table 20 you see:

 sw56gu.txt and sw56gu_dup.txt are 100% similar. In this case, they are exact

duplicates of one another.

2014 EMC Proven Professional Knowledge Sharing 30

 killfile.faq and killfile_i_25.faq evaluate to 97% similar even though

killfile_i_25.faq contains 25% more content than killfile.faq.

 a_16.txt is a control file and matched with its exact duplicate as well as two other

control files, as expected.

 gettysburg.txt was found similar to all of its variations in the repository.

 us-const.txt was also found similar to all of its variations in the repository, as well as

an exact duplicate that had a different name (const11.txt).

 The five binary files that were tested (MS Word file.docx, MS Word

file_d_10.docx, MS Word file.pdf, MS Word file_d_10.pdf,

VaticanStaircase.jpg) matched only on their exact duplicates, and did not match

files known to be similar. In a way this makes sense, but highlights a weakness of this

solution: all files examined for similarity must be in text format.

4 Conclusion

This article described how to implement a solution in a Documentum repository to find similar

content without the use of a full text search engine. The solution capitalized on a unique

relationship between an Aspect and a database view. The Aspect provided the creation and

storage of a special hash value (called the Similarity Index) using the SimHash algorithm, while

the database view created a correlation table of these values against which queries could be

run to identify similar content.

As a final solution, I had hoped to be able to issue the query in Table 21.

Table 21 Envisioned Find Similar Query

select r_object_id from dm_document where

similarity(SI_value,[SI]) >= 80%

Where, SI_value is the Documentum object attribute name holding the 64-bit SI value, [SI]

is a known SI value, and the similarity() function performs a simple comparison of the two

values to determine similarity.

The barrier to implementing a solution exactly like this was the inability to extend DQL with a

custom function, namely the similarity() function. However, the spirit of the vision of this

2014 EMC Proven Professional Knowledge Sharing 31

solution was preserved through the interaction of the SIAspect and the si_view database

view. These two mechanisms were combined in a unique relationship (illustrated in Figure 1) to

provide the necessary functionality with only a small sacrifice in usability. Instead of the simple,

succinct query illustrated in Table 21, the query is a little more cumbersome, but no less

affective (see Table 22).

Table 22 Find Similar Query

select similar_obj_id from dbo.si_view where r_object_id =

'[r_object_id]' and similarity >= 0.80

Where [r_object_id] is the object ID of the known object.

Instead of the solution querying the objects directly (as shown in Table 21), it queries the

database view, which takes care of implementing the functionality not achievable directly in

DQL.

The solution presented here is in no way a substitute for the capabilities of xPlore or Lucine.

This Similarity Index implementation has a very narrow focus and applicability, namely: it finds

syntactically similar documents based upon a hashing algorithm. It gives a good first cut at

similarity among documents, but it can be fooled. For example, rearranging paragraphs in a

document can impact the result of the SimHash value, thus skewing the similarity comparison,

where such rearrangement does not necessarily affect Lucine’s MoreLikeThis API in the

same way. However, the Similarity Index does not require additional software, databases,

indexes, or storage space to implement. In this regard, I believe the Similarity Index

implementation discussed here is a very good, low-cost, low-risk alternative for discovering

similar content in a Documentum repository.

Two final caveats about this solution; one was stated in Section 3.6.4, the other was hinted at in

Section 3.3.3:

 The SI solution described herein only works for content in pure text form. The SimHash

will calculate for binary files; however, there is no guarantee that a single letter change in

text, translates to a single bit change in a binary format. Therefore, to truly implement

this solution in a production environment, text renditions must exist for all content.

2014 EMC Proven Professional Knowledge Sharing 32

 The potential for the si_view database view to grow unreasonably large exists. With

my 1,279 test objects, the view was already 21,864 rows long. For a modern RDBMS

this is probably inconsequential; however, I believe an upper limit does exist. I did not

test for this limit.

5 Get the Source Code

The source code archives for the SI Aspect can be obtained here:

 With test content files (107MB): https://app.box.com/s/z63rznnjbhu3oxmpxerz

 Without test content files (69MB): https://app.box.com/s/9g2cm0j98yvylh7ui6f2

 Only test content files (39MB): https://app.box.com/s/1vb7e8jyvara0jqwxu2d

6 Acknowledgements

Thanks Brian Yasaki and Rachael Roth for your help with the proofing of this paper and the

testing of the implementation described herein; you have been invaluable to me. Thank you

again.

7 About the Author

Mr. Roth has over 22 years of experience in the software industry; his past 16 years have been

devoted almost exclusively to content management. Mr. Roth is a Director of Technology at

Armedia, LLC and a certified EMC Technical Architect. Mr. Roth is also the author of the

successful how-to book, A Beginner’s Guide to Developing Documentum Desktop Application

(ISBN: 0-595-33968-9) and regularly blogs at msroth.wordpress.com.

https://app.box.com/s/z63rznnjbhu3oxmpxerz
https://app.box.com/s/9g2cm0j98yvylh7ui6f2
https://app.box.com/s/1vb7e8jyvara0jqwxu2d
http://www.amazon.com/Beginners-Developing-Documentum%C2%AE-Desktop-Applications/dp/0595339689/ref=sr_1_1?ie=UTF8&qid=1373996399&sr=8-1&keywords=0595339689
http://msroth.wordpress.com/

2014 EMC Proven Professional Knowledge Sharing 33

8 References

[1] Saladjiev. (2011, March) EMC2 Community Network (ECN). [Online].

https://community.emc.com/message/536386#536386

[2] Wikipedia. [Online]. http://en.wikipedia.org/wiki/Md5

[3] Aaron Johnson. (2008, March) cephas.net. [Online]. http://cephas.net/blog/2008/03/30/how-

morelikethis-works-in-lucene/

[4] Moses Charikar. (2002, May) Similarity Estimation Techniques from Rounding. [Online].

http://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf

[5] Philipp Braun. (2011, May) Brauns Brainchildren. [Online].

http://www.philippbraun.net/2011/05/handling-problematic-content-google.html

[6] Wikipedia. [Online]. http://en.wikipedia.org/wiki/Hamming_distance

[7] Common Crawl. [Online]. https://github.com/commoncrawl/commoncrawl-

crawler/blob/master/src/org/commoncrawl/util/SimHash.java

[8] Guava: Google Core Libraries for Java 1.6+. [Online]. http://code.google.com/p/guava-

libraries/wiki/Release14

[9] fastutil: Fast & compact type-specific collections for Java. [Online]. http://fastutil.dsi.unimi.it/

[10] M. Scott Roth. (2011, June) dm_misc. [Online].

http://msroth.wordpress.com/2011/06/13/where-do-aspects-store-atribute-values/

[11] Jeff Smith. (2007, May) Jeff's SQL Server Blog. [Online].

http://weblogs.sqlteam.com/jeffs/archive/2007/05/09/60197.aspx

[12] Wikipedia. [Online]. http://en.wikipedia.org/wiki/Combination

[13] Mirza Fazlic. (2009, February) EMC Community Network. [Online].

https://community.emc.com/message/536386#536386
http://en.wikipedia.org/wiki/Md5
http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-lucene/
http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-lucene/
http://www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/CharikarEstim.pdf
http://www.philippbraun.net/2011/05/handling-problematic-content-google.html
http://en.wikipedia.org/wiki/Hamming_distance
https://github.com/commoncrawl/commoncrawl-crawler/blob/master/src/org/commoncrawl/util/SimHash.java
https://github.com/commoncrawl/commoncrawl-crawler/blob/master/src/org/commoncrawl/util/SimHash.java
http://code.google.com/p/guava-libraries/wiki/Release14
http://code.google.com/p/guava-libraries/wiki/Release14
http://fastutil.dsi.unimi.it/
http://msroth.wordpress.com/2011/06/13/where-do-aspects-store-atribute-values/
http://weblogs.sqlteam.com/jeffs/archive/2007/05/09/60197.aspx
http://en.wikipedia.org/wiki/Combination

2014 EMC Proven Professional Knowledge Sharing 34

https://community.emc.com/docs/DOC-3032

[14] M. Scott Roth. (2011, July) dm_misc. [Online].

http://msroth.files.wordpress.com/2011/07/similarity-index.pdf

[15] M. Scott Roth. (2013, May) dm_misc. [Online].

http://msroth.files.wordpress.com/2013/05/the-similarity-index-v21.pdf

https://community.emc.com/docs/DOC-3032
http://msroth.files.wordpress.com/2011/07/similarity-index.pdf
http://msroth.files.wordpress.com/2013/05/the-similarity-index-v21.pdf

2014 EMC Proven Professional Knowledge Sharing 35

i SimHash is patented in US Patent #7158961.

ii A k-gram is simply a string of characters of length k.

iii A shingle is the result of hashing a k-gram. The hashing algorithm used here is cryptographic

and can be of your choosing.

iv The input is converted to a binary string for comparison.

v The SQL presented in this section is SQL, not DQL (unless otherwise noted), and intended to

be run from a database client.

vi All SQL was developed and tested on Microsoft SQL Server 2012. Your mileage may vary on

other databases.

vii 70% was an arbitrary cutoff point, but seemed reasonable. I don’t expect anyone to be

interested in objects that share less than 70% similarity. However, this value can easily be

adjusted to meet your needs.

viii I used Tomcat 7.

ix I tested using files from the Computers and Internet archives at www.textfiles.com, in addition

to some control files I developed myself.

x Because there is an element of randomness to loading the files, it is not possible to state an

exact number.

EMC believes the information in this publication is accurate as of its publication date. The

information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION

MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO

THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an
applicable software license.

http://www.textfiles.com/

