

Captiva 7 Web Services Output
Tutorial

M. Scott Roth
Director of Technology

May 2014

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l

Contents

1 Introduction .. 1

2 Environment.. 2

3 Web Services ... 2

3.1 Web Service Design ... 3

3.2 Web Service Implementation ... 4

3.2.1 IncomingCaseDocsWS Interface Class .. 5

3.2.2 IncomingCaseDocs Implementation Class .. 6

3.2.2.1 getCaseInfo Method ... 7

3.2.2.2 validateCaseID Method ... 8

3.2.2.3 importFileToCMS Method... 8

3.2.3 IncomingCaseDocs Result Classes (POD) .. 9

3.2.3.1 WSOCaseInfoResult Data Class ... 10

3.2.3.2 WSOValidateIdResult Data Class... 11

3.2.3.3 WSOImportResult Data Class .. 12

3.3 Web Services Deployment .. 13

3.4 WSDL ... 13

4 Captiva Designer Project ... 14

4.1 CaptureFlow .. 14

4.1.1 Flow ... 14

4.1.2 Custom Values .. 16

4.1.3 IA Value Assignments .. 16

4.2 Profiles .. 18

4.2.1 Image Processor Profile .. 18

4.2.2 Document Type ... 19

4.2.3 Standard Export Profile ... 20

4.3 Module Configurations ... 22

4.3.1 ScanPlus .. 23

4.3.2 ReadBarCode (Image Processor) ... 23

4.3.3 Desktop ... 23

4.3.4 NuanceOCR ... 24

4.3.5 LogResults (Standard Export) .. 25

4.3.6 WebService Output ... 25

4.3.6.1 GetCaseInfo ... 26

4.3.6.2 ValidateCaseInfo ... 28

4.3.6.3 ImportToCMS .. 29

4.4 Deployment... 30

5 Testing and Results ... 30

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l

5.1 Test Harness .. 30

5.2 Storm ... 30

5.3 Standard Out ... 31

5.4 IA Administrator .. 32

5.5 Complete Run Through ... 32

6 Conclusion ... 35

7 References .. 37

8 Acknowledgements ... 37

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l

Preface

I was recently asked to create a simple Captiva solution that allowed a client to scan documents, verify

the value of a barcode with a database, and export the scanned images to a content management

system. This is a capture process I have created many times using a combination of output modules and

enterprise export modules. However, the catch this time around was that all database and content

management system interaction had to be accomplished through web services and not the ODBC Export

module or an enterprise export module. In addition, it had be accomplished with no or minimal client-

side scripting.

Having never used the Captiva web service modules, nor created web services for Captiva to consume, I

started reading the Captiva documentation, the WSOutputScan sample Captiva Designer project, the

online Captiva forums, and Google hoping to find a comprehensive example. It didn’t take long to

exhaust these resources and gain no useable knowledge to help me get started.

This tutorial lays out, in a step-by-step fashion, my successful experience with Captiva’s Web Service

Output module. It is my contribution to the Captiva community to fill the need for a simple, web services

starter project. Hopefully you will find it helpful.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 1

1 Introduction
Captiva 7 (as well as Captiva 6) includes the Web Services Output (WSO) module which allows Captiva

capture processes (a.k.a., CaptureFlows) to interface with external systems using SOAP-based web

services. This tutorial documents my experience using Captiva 7’s WSO module. In particular, it

provides examples and best practices, and examines nuances for using web services and WSO.

The scenario for this tutorial is that of a law office that scans documents related to cases, verifies the

index data retrieved from an external system, and releases the scanned documents to a content

management system. The hardcopy documents are received by the office and barcode labels are affixed

to the documents to identify their case number in a pre-processing step. Captiva is used to scan the

documents, read the case number from the barcode, and retrieve case information from an external

case management system via web services. Case information is displayed to the Scan Operator for

verification. If it is incorrect, the Scan Operator can change the case number and retrieve the case

information again. After the case information is verified, Captiva exports the scanned documents to the

firm’s case management system and updates a simple log file recording the date and time of the scan.

Figure 1 depicts the high-level flow of this scenario.

Figure 1 Incoming Case Document Process Flow

The web services employed in this scenario simulate the actions they imply and simply return

reasonable values to the Captiva WSO module. What the web services do is irrelevant; the important

aspects of the tutorial are how to design, build, and configure the web services to be consumed by the

Captiva WSO module and how to configure the WSO module in the CaptureFlow.

This tutorial assumes competency with Eclipse, Java, Captiva modules, and Captiva Designer. I do not

explain how to use these tools other than to highlight important aspects or nuances concerning

implementation of the solution.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 2

2 Environment
The computing environment I used to develop and test this tutorial consisted of a single, virtualized

server running: Windows 2008 Server, Microsoft SQL Server 2008, Captiva 7, Apache TomEE+ 1.6, Java

1.7, and Eclipse for Java EE developers 4.3 (Kepler).

Captiva was installed in an out-of-the-box configuration using SQL Server for its database. The following

Captiva modules were installed:

 EMC Captiva Designer

 EMC Captiva ScanPlus

 EMC Captiva Desktop

 EMC Captiva Administrator

 EMC Captiva InputAccel Server

 EMC Captiva Image Processor

 EMC Captiva NuanceOCR

 EMC Captiva Web Services Output

 EMC Captiva Standard Export

I used Apache TomEE+ as my application server for web services hosting. TomEE+ is Apache Tomcat

pre-configured to host web services and dynamic web applications. See the References section for links

to more information regarding TomEE+.

3 Web Services
When designing web services to use with Captiva WSO, there are a few important things to keep in

mind. First, Captiva WSO can only consume SOAP web services; RESTful web services are not supported.

Second, you need to know that the Captiva WSO module can only consume anonymous web services

that do not require Basic or Windows authentication before accessing the service. This does not mean

you can’t send credentials as input parameters to web services and have the service logic do

authentication. I simulate this idea later in the tutorial. Anonymous access web services mean any

user/process can request access to the web service. Think of it like allowing access to a public web

page. You have used anonymous web services and probably haven’t even realized it. For example,

anonymous web services can be used to report weather conditions and look up ZIP codes. Many of the

apps on your smartphone use these kinds of services to find nearby restaurants and movie listings.

You can safeguard your web services to some degree by using network security techniques like IP

filtering, so only connections from the Captiva WSO server are accepted by the web services server. See

the References section for more information regarding anonymous web services, and secure

connections using SSL. By default, TomEE+ hosts anonymous web services that do not require

authentication.

Lastly, the Captiva WSO module has no problem consuming web services that return primitive types:

Boolean, String, int. However, it does not seem to consume collections well, which can present a

problem if your services return something more complex than a primitive type. For example, in my

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 3

scenario, the getCaseInfo() web method1 returns an array of Strings containing a case’s ID,

name, plaintiffs, and defendants. Returning these Strings as a List<String> (which is a valid

JAX-WS type), results in the WSO module’s inability to even map the result to IA values. My solution to

this limitation is to wrap all web methods that return a complex type in a Plain Old Data class2.

By having all of my web methods return an object, I can return multiple variable types to the Captiva

WSO module from a single web method. As noted above, the getCaseInfo() method returns

several Strings, one of which is a status message from the web service that can be mapped to an IA

value. For example, if the method encounters an error and can’t return the case info, instead of

“silently failing”, it returns a message that is mapped to an IA value that can be discovered by the scan

operator or the Captiva administrator.

The following sections discuss the web services I built for this tutorial to simulate interaction with

external systems. They all return an object as a result. The importFileToCMS() method even

simulates sending the scanned documents to a case management system using MTOM (Message

Transmission Optimization Mechanism).

3.1 Web Service Design
Table 1 defines the web method interfaces designed to meet the requirements of the scenario.

Table 1 IncomingCaseDocs Web Services Definitions

Web Method Input Arguments Return Values Purpose
getCaseInfo String caseId WSOCaseInfo

Result
Simulates retrieving
data from the case
management system

validateCaseId String caseId WSOValidateCaseId

Result

Simulates the validation
of the case Id with the
case management
system

importFileToCMS String username,

String password,

String caseId,

String filename,

byte[] filedata

WSOImportFile

Result

Simulates importing the
scanned document into
the case management
system using MTOM

The logic for each interface, method, and data class are described in the following section.

1 In general, I consider a web service to be an interface which describes a collection of operations that can be
accessed through SOAP messages. A web method is a component of a web service. The web service is called via
SOAP, where the web method is called by proxy from the web service. I try to use these terms in their proper
manner in this tutorial, but may occasionally use them synonymously.
2
 A Plain Old Data (POD) class is nothing more than a wrapper around a data structure with getters and setters.

The limitations addressed by these POD objects can also be addressed by using additional JAX-WS annotations in
the method definitions, but it seemed easier to use PODs and let JAX-WS generate the necessary XML
automatically.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 4

3.2 Web Service Implementation
The web services are implemented using an Eclipse Dynamic Web Project. The project contains six

classes:

 IncomingCaseDocs – This class contains the implementation and the simulated logic for all

of the methods listed in Table 1 . The details of each class follow in subsequent sections of this

tutorial.

 IncomingCaseDocsWS – This is the interface class for the web services and contains the

interface contracts listed in Table 1 as well as all of the necessary annotations to make the

services and data elements visible to Captiva WSO.

 WSOCaseInfoResult – This data class contains the results that are returned when the

getCaseInfo() method is called.

 WSOValidateCaseIdResult – This data class contains the results that are returned when

the validateCaseId() method is called.

 WSOImportFileResult – This data class contains the results that are returned when the

importFileToCMS() method is called.

 WSOTest – This class is a simple unit test class for the methods in IncomingCaseDocs.

Figure 2 depicts the Navigator view of the Eclipse project.

Figure 2 Eclipse Dynamic Web Project Structure

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 5

3.2.1 IncomingCaseDocsWS Interface Class

The interface class contained in Listing 1 describes the web service method contracts as specified in

Table 1 . It also contains the annotations necessary to make the web methods visible and consumable

by Captiva WSO.

Listing 1 IncomingCaseDocsWS Interface Class
package com.dm_misc.captiva.wso;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;

@WebService(targetNamespace = "http://dm_misc.com/wsdl")

public interface IncomingCaseDocsWS {

 @WebMethod(operationName="getCaseInfo",

 action="http://dm_misc.com/wsdl/getCaseInfo")

 @WebResult(name="caseInfo")

 public WSOCaseInfoResult getCaseInfo(

 @WebParam(name="caseId") String caseId);

 @WebMethod(operationName="validateCaseId",

 action="http://dm_misc.com/wsdl/validateCaseId")

 @WebResult(name="isValid")

 public WSOValidateIdResult validateCaseId(

 @WebParam(name="caseId") String caseId);

 @WebMethod(operationName="importToCMS",

 action="http://dm_misc.com/wsdl/importToCMS")

 @WebResult(name="importResult")

 public WSOImportResult importToCMS(

 @WebParam(name="username") String username,

 @WebParam(name="password") String password,

 @WebParam(name="caseId") String caseId,

 @WebParam(name="filename") String filename,

 @WebParam(name="filedata") byte[] filedate);

}

Note the @annotations used in describing the interfaces:

 @WebService – This annotation declares the interface to be a JAX-WS web service. It also

defines a name space for the service. You will see this value used in the WSDL file to scope each

element.

 @WebMethod – Each public, callable method is declared as a web method, and given an

operation name and an action URI. You will see the operation names defined here when we

access the web service WSDL from Captiva WSO (Section 4.3.6). The action URIs are used in the

WSDL to map the operations to the web methods.

 @WebResult – This annotation gives a meaningful name to the result value. Again, you will

see this in Section 4.3.6 when we map the web method results to IA values.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 6

 @WebParam – This annotation gives each web method’s input parameters a descriptive name

that is visible when mapping the IA values to the web method calls (see Section 4.3.6). Without

these annotations, the input parameters are simply labeled as arg0, arg1, etc.

3.2.2 IncomingCaseDocs Implementation Class

The IncomingCaseDocs class contains the implementation logic for the web methods described by

the IncomingCaseDocsWS interface class discussed in Section 3.2.1. Mostly these are “mock

methods” that simply return reasonable values without actually doing anything. However, some error

checking is performed to ensure Captiva is sending and receiving valid data and to test the use of the

message result value in each POD class.

Listing 2 contains the first few lines of the IncomingCaseDocs class file with the necessary web

service annotations. Each method of this file is discussed individually in subsequent sections.

Listing 2 IncomingCaseDocs Implementation Class
package com.dm_misc.captiva.wso;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import javax.jws.WebService;

import javax.xml.ws.soap.MTOM;

@MTOM

@WebService(

 portName = "IncomingCaseDocsPort",

 serviceName = "IncomingCaseDocsService",

 targetNamespace = "http://dm_misc.com/wsdl",

 endpointInterface = "com.dm_misc.captiva.wso.IncomingCaseDocsWS")

public class IncomingCaseDocs implements IncomingCaseDocsWS {

There are only two annotations required in this file:

 @MTOM – This annotation tells the web service to expect binary data to be sent unencoded.

Generally, this is a more efficient way to transport binary data (i.e., file content) than just plain

SOAP. This annotation is required for the importFileToCMS() method discussed in Section

3.2.2.3.

 @WebService – This is the same annotation we saw in the definition of the

incomingCaseDocsWS interface class (Section 3.2.1), but with a few new arguments. The

arguments shown here are all used to properly generate the WSDL file.

o portName – The name of the web service port as it will appear in the WSDL. You can

choose any name you like for your port, but common convention dictates that you add

the word ‘Port’ to the end of the class name.

o serviceName – The name of the web service as it will appear in the WSDL. You can

choose any name you like for your web service, but common convention dictates that

you add the word ‘Service’ to the end of the class name.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 7

o targetNamespace – It is critical that the namespace defined here matches the

namespace defined in the incomingCaseDocsWS interface class. Note: I found that

any targetNamespace that did not end with ‘/wsdl’ would not produce a WSDL

file readable by Captiva WSO.

o endpointInterface – This is the fully qualified name of the web services interface.

3.2.2.1 getCaseInfo Method

The getCaseInfo() method is shown in Listing 3 . The method’s logic is straightforward:

 it receives a case ID, which it validates (the details of validation are discussed in Section 3.2.2.2);

 after validation, it defines a set of mock case data depending upon whether the case ID is an

even or odd number;

 it then returns a WSOCaseInfoResult object containing the case data (see Section 3.2.3.1).

If the case ID is valid, the message returned in the WSOCaseInfoResult object is “Success”. If the

case ID was not valid, the message returned is the message generated by the validateCaseId()

method.

Listing 3 getCaseInfo Method
public WSOCaseInfoResult getCaseInfo(String caseId) {

 int id;

 String name;

 String plaintiff;

 String defendant;

 // make sure case Id is valid

 if (validateCaseId(caseId).isValidId()) {

 // return one of two sets of data based on even/odd case id

 id = Integer.parseInt(caseId);

 if (id % 2 == 0) {

 name = "Allegiance Insurance Co. vs. Molly Peters";

 plaintiff = "Allegiance Insurance Co.";

 defendant = "Molly Peters";

 } else {

 name = "Rate Hikes by Allegiance Insurance Co.";

 plaintiff = "Molly Peters, John Spivy, and the Arizona Insurance

 Board.";

 defendant = "Allegiance Insurance Co.";

 }

 } else {

 return new WSOCaseInfoResult(caseId, "", "", "",

 validateCaseId(caseId).getMessage());

 }

 return new WSOCaseInfoResult(caseId, name, plaintiff, defendant,

 "Success");

}

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 8

3.2.2.2 validateCaseID Method

Listing 4 contains the code for the validateCaseId() method. A valid case ID meets three simple

criteria:

 it is not null or empty,

 it is greater than 4 digits long (leading zeroes are ignored),

 it contains only numeric characters.

Listing 4 validateCaseId Method
public WSOValidateIdResult validateCaseId(String caseId) {

 // if case id is longer than 4 digits and contains only numbers

 // it is valid

 if ((caseId == null) || (caseId.length() == 0))

 return new WSOValidateIdResult(false,"Case Id is null");

 try {

 long i= Integer.parseInt(caseId);

 if (i > 9999) {

 return new WSOValidateIdResult(true,"valid");

 } else {

 return new WSOValidateIdResult(false,"Case Id too short");

 }

 } catch (Exception e) {

 return new WSOValidateIdResult(false,"Case Id is not numeric: " +

 caseId);

 }

}

Using Integer.parseInt() kills two birds with one stone: if the conversion produces an

exception, the case ID contains a non-numeric character; and if the converted number is less than

10,000 it is too short.

3.2.2.3 importFileToCMS Method

The importFileToCMS() method in Listing 5 simulates importing the scanned files into a case

management system and returns a unique ID for each file imported. The method implements the

following logic:

 validate the case ID,

 validate the password (“captiva”), and

 save the file streamed to the method using MTOM to the c:/temp directory.

Listing 5 importFileToCMS Method
public WSOImportResult importToCMS(String username, String password,

 String caseId, String filename, byte[] filedata) {

 String filePath = "c:/temp/" + filename;

 String fileId = "";

 // validate case Id

 if (! validateCaseId(caseId).isValidId()) {

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 9

 return new WSOImportResult(false,null,"Invalid case ID.");

 }

 // simulate logging in with username and password

 if (! password.equalsIgnoreCase("captiva")) {

 return new WSOImportResult(false,null,"Invalid user password");

 }

 if (filedata != null) {

 fileId = "" + System.currentTimeMillis();

 try {

 FileOutputStream fos = new FileOutputStream(filePath);

 BufferedOutputStream outputStream = new BufferedOutputStream(fos);

 outputStream.write(filedata);

 outputStream.close();

 } catch (Exception e) {

 return new WSOImportResult(false,null,"Error importing " + filename

 + " to case " + caseId);

 }

 return new WSOImportResult(true,fileId,"Successfully imported " +

 filename + " to case " + caseId + " as " + fileId);

 } else {

 return new WSOImportResult(false,null,"No file transfered");

 }

}

In this method, I simply compare the password passed into the method to the string “captiva” to

authenticate the user. This is obviously not a practice you want to implement in real life; however, I

hope it gives you some ideas for how you could implement real authentication. For example, you could

pass in a security token or encrypted credentials and have the method perform real authentication with

Active Directory or the case management system. The EMC Captiva Capture Web Services Guide also

discusses how you can use Captiva WSO with SSL, further securing your credentials.

The file content is passed to the web method using the MTOM protocol mentioned in Section 3.2.2. The

incoming parameter type is byte[]. Nothing else needs to be done to transfer the file. As you will see

in Section 4.3.6.3, when we configure the Captiva WSO module to use this web method, we simply map

a binary output IA value from Captiva to the byte[] input parameter of the web method and

SOAP/MTOM takes care of the rest.

A unique file ID is fabricated to simulate interaction with the case management system by getting the

system time. The file ID is logged later in the process for auditing purposes (see Section 4.2.3).

3.2.3 IncomingCaseDocs Result Classes (POD)

The most important aspect of these web services are the POD classes they return. I have created a POD

class for each web method, primarily so I could return complex results and a message to the calling

Captiva WSO module. These classes contain String data fields with getters/setters, and their purpose

is to simply encapsulate the values passed into them and make them accessible via the WSDL.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 10

3.2.3.1 WSOCaseInfoResult Data Class

The WSOCaseInfoResult class returns five Strings (see Listing 6):

 caseId – The ID for the case. This is the same value that was passed into the method from the

document’s barcode.

 caseName – The name of the case in the case management system.

 casePlaintiff – The list of case plaintiffs in the case as a single String.

 caseDefendant – The list of case defendants in the case as a single String.

 message – A message to be returned to the Captiva WSO module.

Listing 6 WSOCaseInfoResult Data Class
package com.dm_misc.captiva.wso;

public class WSOCaseInfoResult {

 private String caseId;

 private String caseName;

 private String casePlaintiff;

 private String caseDefendant;

 private String message;

 public WSOCaseInfoResult(String id, String name, String plaintiff,

 String defendant, String msg) {

 caseId = id;

 caseName = name;

 casePlaintiff = plaintiff;

 caseDefendant = defendant;

 message = msg;

 }

 public String getCaseId() {

 return caseId;

 }

 public String getCaseName() {

 return caseName;

 }

 public String getCasePlaintiff() {

 return casePlaintiff;

 }

 public String getCaseDefendant() {

 return caseDefendant;

 }

 public void setCaseId(String caseId) {

 this.caseId = caseId;

 }

 public void setCaseName(String caseName) {

 this.caseName = caseName;

 }

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 11

 public void setCasePlaintiff(String casePlaintiff) {

 this.casePlaintiff = casePlaintiff;

 }

 public void setCaseDefendant(String caseDefendant) {

 this.caseDefendant = caseDefendant;

 }

 public String getMessage() {

 return message;

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

3.2.3.2 WSOValidateIdResult Data Class

The data fields contained in the WSOValidateIdResult class (see Listing 7) are:

 validId (boolean) – This indicates whether the case ID is valid or not.

 message (String) – A message to be returned to the Captiva WSO module.

Listing 7 WSOValidateCaseIdResult Data Class
public class WSOValidateIdResult {

 private boolean validId;

 private String message;

 public WSOValidateIdResult (boolean result, String msg){

 validId = result;

 message = msg;

 }

 public boolean isValidId() {

 return validId;

 }

 public String getMessage() {

 return message;

 }

 public void setValidId(boolean validId) {

 this.validId = validId;

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 12

3.2.3.3 WSOImportResult Data Class

The WSOImportResult class (shown in Listing 8) contains data fields for:

 importSuccess (boolean) – This indicates whether the import to the case management

system was successful.

 importedFileId (String) – This is a fabricated ID to simulate interaction with the case

management system.

 message (String) – This is an error or success message to be returned to the Captiva WSO

module.

Listing 8 WSOImportFileResult Data Class
package com.dm_misc.captiva.wso;

public class WSOImportResult {

 private boolean importSuccess;

 private String message;

 private String importedFileId;

 public WSOImportResult (boolean result, String fileId, String msg){

 importSuccess = result;

 message = msg;

 importedFileId = fileId;

 }

 public boolean isImportSuccess() {

 return importSuccess;

 }

 public String getMessage() {

 return message;

 }

 public String getImportedFileId() {

 return importedFileId;

 }

 public void setImportSuccess(boolean importSuccess) {

 this.importSuccess = importSuccess;

 }

 public void setMessage(String message) {

 this.message = message;

 }

 public void setImportedFileId(String importedFileId) {

 this.importedFileId = importedFileId;

 }

}

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 13

3.3 Web Services Deployment
To deploy the web service, simply export the IncomingCaseDocs project from Eclipse as a WAR file,

and place it in the TomEE+ /webapps directory. The content of the WAR file is listed in Listing 9 .

Listing 9 IncomingCaseDocs WAR File
IncomingCaseDocs

IncomingCaseDocs\META-INF

IncomingCaseDocs\WEB-INF

IncomingCaseDocs\META-INF\MANIFEST.MF

IncomingCaseDocs\WEB-INF\classes

IncomingCaseDocs\WEB-INF\lib

IncomingCaseDocs\WEB-INF\wsdl

IncomingCaseDocs\WEB-INF\classes\com

IncomingCaseDocs\WEB-INF\classes\com\dm_misc

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso

 \IncomingCaseDocs.class

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso

 \IncomingCaseDocsWS.class

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso

 \WSOCaseInfoResult.class

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso

 \WSOImportResult.class

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso

 \WSOValidateIdResult.class

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso\test

IncomingCaseDocs\WEB-INF\classes\com\dm_misc\captiva\wso\test\WSOTest.class

3.4 WSDL
Notice that there is no WSDL file listed in Listing 9 . The Captiva WSO module requires a WSDL file to

map input and output parameters. So, where is the WSDL file? JAX-WS web services do not require a

WSDL file to be created at compile time; one is generated automatically upon request at runtime. JAX-

WS generates the WSDL file based upon reflection and the @annotations in the class files. That said,

it can be difficult to determine the WSDL URL required by Captiva WSO.

The easiest way to find the WSDL URL is to look in the TomEE+ Catalina.log file. Find an entry

similar to this after you deploy the WAR file and start the TomEE+ server:

INFO: Webservice(wsdl=http://localhost:8080//IncomingCaseDocs/

IncomingCaseDocsService, qname={http://dm_misc.com/wsdl}

From this log entry, you can discern that the WSDL URL is:

http://localhost:8080//IncomingCaseDocs/IncomingCaseDocsService?wsdl

Keep this value handy for configuring the Captiva WSO module discussed in Section 4.3.6.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 14

4 Captiva Designer Project
Now that the web services are in place, we can turn our attention to the Captiva CaptureFlow required

for this tutorial. This section describes the Captiva Designer project and the module configurations that

support the scenario discussed in Section 1. The project contains the following components:

 Image Processing Profile

o ReadBarCode – The Image Processor profile for reading the barcodes from the incoming

documents.

 Document Types Profile

o CaseDocument – The Document type defining metadata fields to support the

CaptureFlow and document export process.

 Export Profile

o LogCaseDocumentExportToCMS – The Standard Export profile to log metadata regarding

scan and export.

 CaptureFlow

o IncomingCaseDocument – The CaptureFlow implementing the process described in

Figure 1 and containing the necessary logic and IA values to integrate the modules.

Each of these components is described in the following sections.

4.1 CaptureFlow
The CaptureFlow is essentially the heart and soul of the capture process and gives context to the rest of

tutorial’s discussion. The following sections describe the CaptureFlow, the modules used, the Custom

Values defined, and all of the IA value assignments necessary to implement the business process

discussed in Section 1.

4.1.1 Flow

The Captiva Designer project contains a single CaptureFlow named IncomingCaseDocument,

depicted in Figure 3 . Table 2 lists the process steps and corresponding Captiva modules used to

implement each step depicted in the figure.

Table 2 Process Step Definitions

Process Step Module Type Trigger Level Remarks

ScanPlus ScanPlus Batch (7) See Section 4.3.1 for configuration details.

ReadBarCode Image
Processor

Page (0) Profile: ReadBarCode. See Section 4.2.1 for
configuration details.

GetCaseInfo WSO Document (1) See Section 4.3.6.1 for configuration details.

Desktop Desktop Document (1) See Section 4.3.3 for configuration details.

ValidateCaseInfo WSO Document (1) See Section 4.3.6.2 for configuration details.

Is Case Invalid Decision Document (1) The decision uses the test:
CustomValues:1.isCaseIdValid =

false.

Jump To: Desktop Jump Document (1) No additional configuration.

NuanceOCR Nuance OCR Document (1) See Section 4.3.4 for configuration details.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 15

Process Step Module Type Trigger Level Remarks

ImportToCMS WSO Document (1) See Section 4.3.6.3 for configuration details.

LogResults Standard
Export

Batch (7) Profile: LogCaseDocumentExportToCMS. See
Section 4.2.3 for configuration details.

Figure 3 IncomingCaseDocs CaptureFlow

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 16

4.1.2 Custom Values

Table 3 describes the Custom Values defined in the CaptureFlow and their purposes.

Table 3 Custom Value Definitions

Custom Value Module Type Level Remarks
CaseNumber CustomValues String 1 Holds the case ID read from the

barcode.
CaseName CustomValues String 1 Holds the case name retrieved by the

web service.
Plaintiff CustomValues String 1 Holds the plaintiffs’ names retrieved

by the web service.
Defendant CustomValues String 1 Holds the defendants’ names

retrieved by the web service.
FileName CustomValues String 1 Holds the name of the file as it will

appear in the case management
system.

isCaseIdValid CustomValues String 1 Holds the result of the
ValidateCaseInfo process step.

isExportOk CustomValues String 1 Holds the result of the ImportToCMS
process step.

ImportedFileId CustomValues String 1 Holds the file ID returned from the
case management system as a result
of the import.

Password CustomValues String 1 Holds the password for the
username required to import file to
case management system.

ServerMsg Custom Values String 1 Place holder for informational
messages returned by web services.

Username CustomValues String 1 Holds the scan operator’s name.

4.1.3 IA Value Assignments

Table 4 describes the Custom and IA value assignments made in the CaptureFlow. As you will see, the

purpose of these assignments is to capture metadata about the process and the scanned documents,

and to link the various CaptureFlow components together by passing data among them.

Table 4 IA Value Assignments

Where Assignment
Occurs

Assignment Remarks

ScanPlus – ReadBarCode

ReadBarCode:0.InputImage =

ScanPlus:0.OutputImage

Send each scanned page to
the ReadBarCode module.

CustomValues:1.Username =

ScanPlus:0.ScanOperator

Capture the scan operator’s
name.

ReadBarCode -
GetCaseInfo

CustomValues:1.CaseNumber =

ReadBarCode:0.Barcode0_Text

when _node:0.NodeIndexFromL1

= 0

Get the case number (case ID)
from the barcode. Ensure it is
the first barcode on the first
page only.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 17

Where Assignment
Occurs

Assignment Remarks

GetCaseInfo – Desktop

Desktop:0.Image =

ReadBarCode:0.OutputImage

Send each page to Desktop for
viewing and processing.

Desktop:1.UimDocumentType =

“CaseDocument”

Manually assign the document
type since we are not using
classification and don’t want
the scan operators to have to
do it manually in Desktop.

Desktop:1.UimDataImportMode =

1

Tell Desktop to accept the
following data.

Desktop:1.$Runtime.InUimData_

CaseNumber = CustomValues:1.

CaseNumber

Pre-populate the Case
Number field with the case
number read from the
barcode.

Desktop:1.$Runtime.InUimData_

CaseName = CustomValues:1.

CaseName

Pre-populate the Case Name
field with the case name
retrieved by the GetCaseInfo
step.

Desktop:1.$Runtime.InUimData_

Defendant = CustomValues:1.

Defendant

Pre-populate the Defendant
field with the defendant
retrieved by the GetCaseInfo
step.

Desktop:1.$Runtime.InUimData_

Plaintiff = CustomValues:1.

Plaintiff

Pre-populate the Plaintiff field
with the plaintiff retrieved by
the GetCaseInfo step.

Desktop -
ValidateCaseInfo

CustomValues:1.ServerMsg = “” Clear any message from a
previous WSO call.

ValidateCaseInfo –
NuanceOCR

NuanceOCR:0.Level0_InputImage

= Desktop:0.Image

Pass each page from the
Desktop to be OCRed and
converted to PDF.

Is_Case_Invalid – Jump
To: Desktop

Desktop:1.UimDataImportMode =

1

Tell Desktop to accept the
following data.

Desktop:1.$Runtime.InUimData_

ServerMsg = CustomValues:1.

ServerMsg

Pre-populate the Error Msg
field with any messages
returned from the previous
WSO call.

Desktop:1.$Runtime.InUimData_

CaseNumber = CustomValues:1.

CaseNumber

Pre-populate the Case
Number field with the case
number previously entered.

Desktop:1.$Runtime.InUimData_

CaseName = CustomValues:1.

CaseName

Pre-populate the Case Name
field with the case name
previously entered.

Desktop:1.$Runtime.InUimData_

Defendant = CustomValues:1.

Defendant

Pre-populate the Defendant
field with defendant
previously entered.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 18

Where Assignment
Occurs

Assignment Remarks

Desktop:1.$Runtime.InUimData_

Plaintiff = CustomValues:1.

Plaintiff

Pre-populate the Plaintiff field
with the plaintiff previously
entered.

Desktop:1.$Runtime.InUimData_

Password = “”

Reset the password on the
Desktop screen.

CustomValues:1.Password = “” Reset the password in the
Custom Values forcing the
user to re-enter it.

NuanceOCR –
ImportToCMS

CustomValues:1.FileName =

"CaseDoc-" &

CustomValues:1.CaseNumber &

"_" & _Batch.BatchID & "_" &

_Node:1.NodeIndexFromL7 + 1 &

".pdf"

Build the filename to be used
during the import to the CMS.

CustomValues:1.serverMsg = “” Clear any message from a
previous WSO call.

4.2 Profiles
Some of the modules in this CaptureFlow are configured using profiles. Profiles are new in Captiva 7 and

allow you to setup configurations for certain modules that can be reused in other CaptureFlows. For

this tutorial, we will setup profiles for the Image Processor, the definition of the Document Type (this

includes the index fields the user will fill), and Standard Export. Each of these profiles is discussed in

more detail in the following sections.

4.2.1 Image Processor Profile

The Image Processor profile, ReadBarCode, contains a single filter for reading barcodes, as depicted in

Figure 4 .

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 19

Figure 4 ReadBarCode Profile

4.2.2 Document Type

This tutorial’s single document type, CaseDocument, contains six metadata fields, as defined in Table 5 .

Table 5 CaseDocument Fields

Field Name Data Type Input Mode Index
Level

Remarks

CaseNumber String /

Text

Editable /

Required

1 Contains the case ID as read from the
barcode.

CaseName String /

Text

Read-Only 1 Contains the case name as returned
by the GetCaseInfo step.

Plaintiff String /

Text

Read-Only 1 Contains the plaintiffs’ names as
returned by the GetCaseInfo step.

Defendant String /

Text

Read-Only 1 Contains the defendants’ names as
returned by the GetCaseInfo WSO
step.

Password String /

Text

Editable /

Required

1 Password used to import the scanned
documents into the case
management system.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 20

Field Name Data Type Input Mode Index
Level

Remarks

ServerMsg String /

Text

Read-Only 1 Place holder a message returned by
any of the WSO steps.

These fields all map directly to the Custom Values discussed in Section 4.1.2. To ensure smooth

exchange between document field values in Desktop and Custom Values in the CaptureFlow, their

names and index levels are exactly the same in both locations.

The first four fields, CaseNumber, CaseName, Plaintiff, and Defendant, are obvious as to their

purpose. The getCaseInfo() web method will fill these fields with the results of its query. The last

two fields, Password and ServerMsg, are perhaps a little less obvious.

I included the Password field as a field the user must complete in order to successfully import the

document into the case management system. If the user enters anything other than “captiva” the

import will fail with an “Invalid password” error. This is part of the simulation of passing user credentials

to a web service and having the web service do authentication with an external system. Obviously this is

not a realistic implementation, but allows you to easily trace the user’s entry here, to the web service

call, and ultimately to the success of the process.

The purpose of the read-only ServerMsg field is to display informational messages returned from the

web service. For example, it the caseId contains a non-numeric character, the document will be

returned to the Desktop with the error “Case ID is not numeric.” I have included this

capability as another example to highlight the value of returning complex types from your web methods.

In doing so, I can return the Strings that populate the Desktop fields, as well as a Boolean to

indicate whether the caseId was valid, and an informational message. Figure 18 in Section 5.5

contains a depiction of the Desktop displaying an error message.

4.2.3 Standard Export Profile

The IncomingCaseDocs CaptureFlow uses one Standard Export profile, LogCaseDocumentExportToCMS.

The LogCaseDocumentExportToCMS profile writes metadata values to a CSV file as a record of what was

scanned and what was imported into the case management system. Figure 5 depicts this profile’s

configuration in Captiva Designer.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 21

Figure 5 LogCaseDocumentExportToCMS Standard Export Profile

Figure 6 depicts the error handling for the LogCaseDocumentExportToCMS profile.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 22

Figure 6 LogCaseDocumentExportToCMS Advanced Tab

See Figure 20 in Section 5.5 for an example of this profile’s output.

4.3 Module Configurations
Now that we have created the necessary Profiles, we will assign them to the appropriate CaptureFlow

process modules, and configure those modules that do not utilize profiles. Configuring modules is

accomplished using the CaptureFlow Designer in Captiva Designer. Simply click the down error on a

process icon and select Module Settings from the pop-up menu. See Figure 7 for an example.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 23

Figure 7 CaptureFlow Module Configuration

The following sections discuss the configuration for each of the process modules listed in Table 2 in

Section 4.1.1. It is important to note that for the modules that do not use profiles, the module will be

launched in “Setup Mode” to facilitate configuration. That said, the modules must reside on the

computer from which they are being configured. This is not an issue in an environment such as mine

where everything is self-contained. However, this can cause real headaches in a multi-server

environment.

4.3.1 ScanPlus

The ScanPlus module is used out-of-the-box with no special configuration except the following:

 A scanner was configured.

 On the Auto Batch Creation tab:

o The Batch name schema was defined as follows:

IncomingCaseFile_@(Name)_@(Now)

o Process schema: IncomingCaseDocument

4.3.2 ReadBarCode (Image Processor)

The Image Processor module is configured to use the ReadBarCode Image Processing profile we

created in Section 4.2.1.

4.3.3 Desktop

The Desktop module is configured as depicted in Figure 8 Note the following settings:

 View Mode: Image and Form

 Work Level: Document

 Output IA Value Destination: CustomValues

 Output Dynamic Values: checked

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 24

 Output Array Fields: Value Per Row

Figure 8 Desktop Configuration

4.3.4 NuanceOCR

The NuanceOCR module is configured as depicted in Figure 9 . Note that a new output format was

created, Format1, and was assigned Adobe PDF with image on text in the Format

dropdown.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 25

This format definition will produce a text searchable PDF file and store it in the

OutputFile1_OutputFile IA value that will be used by the web service to import the content to

the case management system (see Section 4.3.6.3).

Figure 9 NuanceOCR Configuration

4.3.5 LogResults (Standard Export)

The Standard Export module was configured to use the LogCaseDocExportToCMS Standard Export

profile we created in Section 4.2.3.

4.3.6 WebService Output

Configuring the three WSO modules discussed in this section is really where you see the web services

described in Section 3 come together with the CaptureFlow and IA values described in Section 4.1. It is

also the place where you see how some of the design decisions made in those sections come into play.

Common to all three configurations will be the WSDL URL. Copy and paste the value obtained from the

Catalina log file (as discussed in Section 3.4) into the WSDL URL field of the WSO setup screen and click

the Parse button. The result should be IncomingCaseDocsService in the Service name field (the

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 26

service name was defined in the code in Listing 2 Section 3.2.2), and one of the method names from

Table 1 Section 3.1 in the Method Name field (see Figure 10).

Figure 10 WSO Setup Screen

For each WSO module in the CaptureFlow, choose the appropriate method name to configure, and click

the Mapping button. Table 6 contains the mapping between the process steps and the web methods.

Table 6 WSO Process Step Names Mapped To Web Method Names

WSO Process Step Name Web Method Name

GetCaseInfo getCaseInfo()

ValidateCaseInfo validateCaseId()

ImportToCMS importFileToCMS()

4.3.6.1 GetCaseInfo

Figure 11 depicts the mapping between the Custom and IA values and the web method parameters in

the GetCaseInfo setup screen.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 27

Figure 11 getCaseInfo Parameter Mapping

Table 7 contains a summary of the mappings depicted in Figure 11 .

Table 7 getCaseInfo Parameter Mapping

IA Values Method Parameters
CustomValues_1.CaseName Out.getCaseInfoResponse.caseInfo.

caseName

CustomValues_1.CaseNumber In.getCaseInfo.caseId

CustomValues_1.Defendant Out.getCaseInfoResponse.caseInfo.

caseDefendant

CustomValues_1.Plaintiff Out.getCaseInfoResponse.caseInfo.

casePlaintiff

CustomValues_1.ServerMsg Out.getCaseInfoResponse.caseInfo.

message

Notice how the web method’s parameters displayed in Figure 11 match the @annotations made in

the web services code in Listing 1 Section 3.2.1. The @WebMethod(operationName=

"getCaseInfo") caused the operation name to be “getCaseInfo”.

@WebResult(name="caseInfo") caused the name of the resulting complex type to be

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 28

“caseInfo”. Without these @annotations in the web services code, the method’s parameters in

WSO would display as arg0, arg1, etc. Interestingly, the names of the actual web service output

variables are the names of the private class variables of the WSOCaseInfoResult object (see Listing

6 , Section 3.2.3.1). This phenomenon is a result of the JAX-WS serialization of the web services objects.

Because of this, it is critical that you use properly cased variable names in your class files and create

properly cased getters/setters also.

4.3.6.2 ValidateCaseInfo

Figure 12 depicts the mapping between the Custom and IA values and the web method parameters in

the ValidateCaseInfo setup screen.

Figure 12 validateCaseInfo Parameter Mapping

Table 8 contains a summary of the mappings depicted in Figure 12 .

Table 8 validateCaseInfo Parameter Mapping

IA Values Method Parameters
CustomValues_1.CaseNumber In.validateCaseInfo.caseId

CustomValues_1.

isCaseIdValid

 Out.validateCaseIdResponse.isValid.

validId

CustomValues_1.ServerMsg Out.validateCaseIdResponse.isValid.

message

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 29

4.3.6.3 ImportToCMS

Figure 13 depicts the mapping between the Custom and IA values and the web method parameters in

the importToCMS setup screen.

Figure 13 importToCMS Parameter Mapping

Table 9 contains a summary of the mappings depicted in Figure 13 .

Table 9 importToCMS Parameter Mapping

IA Values Method Parameters
NuanceOCR_1.OutputFile1_

OutputFile

 In.importToCMS.filedata

CustomValues_1.

CaseNumber

 In.importToCMS.caseId

CustomValues_1.FileName In.importToCMS.filename

CustomValues_1.

ImportedFileId

 Out.importToCMSResponse.importResult.

importFileId

CustomValues_1.isExportOk Out.importToCMSResponse.importResult.

importSuccess

CustomValues_1.Password In.importToCMS.password

CustomValues_1.ServerMsg Out.importToCMSResponse.importResult.

Message

CustomValues_1.Username In.importToCMS.username

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 30

Two parameters stand out here. The first is the NuanceOCR_1.OutputFile1_OutputFile

mapped to In.importToCMS.filedata, and the second is CustomValues_1.Password

mapped to In.importToCMS.password. In the case of the NuanceOCR_1.OutputFile1_

OutputFile, this is the in-memory copy of the PDF created by the OCR process step that is mapped as

input to the importToCMS web method. Specifically, I mapped it to the web method’s byte[] input

parameter, filedata. A little bit of MTOM magic happens here, and the binary content of the PDF

file is transferred to the web service and ingested by the case management system (simulated).

Notice that during the configuration of this WSO module, I did not select the Use MTOM to send files

checkbox. Intuitively, you would think checking this box would be necessary for sending file using

MTOM; however, with the box checked, the module throws a runtime error citing an incorrect MIME

type was used in the SOAP header.

The second parameter is the CustomValues_1.Password variable. As discussed previously in

Section 4.2.2, capturing and passing around a password in this manner is not practical. This example is

merely supposed to show you that you can send login credentials to web services and have the services

to the authentication if necessary.

4.4 Deployment
Deploy the CaptureFlow and all of the profiles to the InputAccel server using the Captiva Designer.

5 Testing and Results
Now that the web services and the Captiva projects have been deployed, we will test them. This section

briefly describes the different testing methods I used to verify the functionality of the solution at

different levels.

5.1 Test Harness
The web services Eclipse project contains a test class, com.dm_misc.captiva.wso.test.

WSOTest, that can be used to test the web service methods and result classes. This test harness does

not instantiate the classes as web services to test them. Instead, it just instantiates them as POJOs and

exercises their various methods and logic.

5.2 Storm
Once the web services were deployed to TomEE+, I used Storm (see References) to test each web

method. Figure 14 depicts Storm testing the getCaseInfo() web method. As you can see, the input

and output parameters are properly labeled (thanks to all those @annotations), and with the proper

input, the expected output is returned.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 31

Figure 14 Storm Web Services Test Client

5.3 Standard Out
All of the web service result classes (see Section 3.2.3) contain simple System.out.println()

statements that output messages to the TomEE+ console window. For brevity, these statements were

omitted from the code listings in Section 3.2.3. Figure 15 depicts the output messages displayed on the

TomEE+ console. These messages help trace the processing of the web service.

Figure 15 TomEE+ Console Output

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 32

5.4 IA Administrator
Finally, the IA Administrator is an invaluable tool for debugging and monitoring your Captiva

CaptureFlows. I am not going to cover all of the aspects of using the IA Administrator, but want to point

out one helpful feature. Open a batch’s settings (double-click the batch in the IA Administrator’s Batch

Traffic window), change the view to Values, and the Filter to CustomValues (see Figure 16). Choose a

document node from the node tree on the left and examine the values in the right-hand pane. Here you

see all of the Custom Values used by our CaptureFlow, including all of the values sent to and received

from the web service. Of special note is the ServerMsg value which contains the informational

message from the web method.

Figure 16 IA Administrator Values View

5.5 Complete Run Through
This last section depicts a complete run through of the CaptureFlow. For simplicity, I am importing files

into the CaptureFlow instead of scanning them. Specifically, I am using the sample images distributed

with Captiva, located on the IA server at: C:\Users\captiva\Documents\Captiva

7.0\samples\Images\production auto learning. Figure 17 depicts the ScanPlus screen

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 33

after importing eight sample images as five documents. Clicking the Finish button starts the

CaptureFlow process.

Figure 17 ScanPlus

After a moment, the sample images should show up in the Captiva Desktop queue for processing, having

had their barcodes read and their case info retrieved via the WSO module. Figure 18 depicts the Captiva

Desktop screen. Note the field values in the right-hand pane of the window. In this example, I

deliberately append an asterisks (*) to the Case Number in order to force an error. The result is the

screen you see. Note the Error Msg that was returned from the web service.

After correcting the Case Number and entering the Password again, the document is processed

successfully.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 34

Figure 18 Captiva Desktop

There are two primary results of a successful run of the CaptureFlow: PDF files are saved in the

c:\temp directory, and a log file is created. Figure 19 depicts the c:\temp directory after a

successful run. Note the following: The files are all PDF, thanks to the OCR step; the file names all

follow the correct naming convention; and a log file exists. The existence of the PDF files in this

directory is proof that the web service is working: the PDF file was passed from the NuanceOCR step to

the importToCMS() web method, and saved here to simulate interaction with a case management

system.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 35

Figure 19 Case Docs in Temp Folder

Figure 20 depicts the log file generated by the Standard Export profile created in Section 4.2.3. This file

is used by the scan operators to verify and track the successful import of scanned files into the case

management system.

Figure 20 Case Doc Log File

6 Conclusion
The purpose of this tutorial was to provide a practical, hands-on example of using Captiva’s Web

Services Output module. The tutorial was presented in two primary parts: creating web services that

can be consumed by WSO, and creating a CaptureFlow that consumes the web services.

I hope this tutorial has demonstrated how interfacing Captiva to external systems via web services

expands Captiva’s capabilities considerably. Though the constraint of only consuming anonymous, SOAP

web services, is limiting in some environments, there are techniques for securing – or at least improving

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 36

the security of – these web services. The ability to return complex types to WSO from web services

further expands WSO’s usefulness and ease of integration. When web services return complex results

to the CaptureFlow (e.g., collections or multiple type results), they can be assigned to Custom Values or

IA values to augment or affect the capture process.

There are other, and perhaps more effective ways to achieve the same results demonstrated in this

tutorial. However, I don’t believe that there are any simpler ways. One of the goals of this tutorial was

to implement a solution that used no Captiva client-side scripting to implement a WSO solution. This

tutorial has achieved that goal by using only Custom and IA value assignments, CaptureFlow logic, and

module configuration.

Here are some key points from this tutorial:

 Anonymous web services – The Captiva WSO module can only consume anonymous, SOAP-

based web services. These two limitations constrain how your web services can be

implemented. The tutorial makes suggestions for alleviating some of these constraints (e.g.,

using IP filtering) as does the EMC Captiva Capture Web Services Guide (e.g., using SSL). The

tutorial provides examples of creating and implementing anonymous web services.

 Returning complex types - If you have any control over the format of the web service return

values, I suggest that you always return POD objects as complex types. This affords you the

option of returning multiple and various data types from a single web method. As

demonstrated in the tutorial, it is often necessary to return collections of items (e.g., arrays of

Strings), or Strings and a Boolean, etc. Another good practice is to return informational

messages from the web methods to WSO for inclusion in the Custom Values and/or display to

the scan operator. This will assist in troubleshooting problems in the future.

 Level of triggering web services – Ensure the trigger level of the WSO is appropriate for both the

service and the data passed to it. For example, in the tutorial the ImportToCMS step triggered

for each document in the batch. If the batch contained 50 documents, it would trigger 50 times.

Depending upon your situation, this could cause a performance bottleneck. It wouldn’t be too

difficult to change the ImportToCMS trigger level to Batch, and update the web service to

receive the entire batch’s documents all at once, thus reducing the number of web service calls

by 49.

 Assignment of values – Be very careful of your assignment of values to Custom and IA values

both in the CaptureFlow and in the WSO mapping tool. Even though the tools will allow you to

make virtually any assignment you want, not all assignments will work as expected due to value

access across levels of the Captiva node tree.

 WSDL changes - Any time you make a change to the web service code that results in a change to

the WSDL file, you will need to reconfigure ALL WSO modules in the CaptureFlow.

 Using MTOM to transfer files – I mentioned it in the tutorial, but it bears repeating: if you use

MTOM to transport binary content to a web service, DO NOT check the Use MTOM to send files

checkbox on the WSO setup screen, it causes an error in the web service.

A R M E D I A W H I T E P A P E R

C a p t I v a 7 W e b S e r v I c e s O u t p u t T u t o r I a l 37

I hope you have enjoyed this tutorial and have found it helpful. If you are interested, the Eclipse project

and the Captiva Designer project can be downloaded here:

 Both projects (2.6 MB) – https://app.box.com/s/hrsog9afxg947kxd667i

 Eclipse project (1.9 MB) – https://app.box.com/s/0khzu76fniokkmop9gdf

 Captiva Designer project (724 KB) – https://app.box.com/s/1nj8h5v8po4gcxw28vot

7 References
Following are links to web sites and documentation I found useful while developing this tutorial.

 EMC Captiva Capture Web Services Guide - Web Services Guide > Setup > Securing Web Services

Communications

 TomEE+ pre-configured application servers - http://tomee.apache.org/

 Eclipse IDE – http://www.eclipse.org

 Simple web services tutorial using Eclipse and TomEE - http://blog.sortedset.com/step-by-step-

web-services-with-tomcat-tomee-apache-cxf-eclipse/

 Web service tutorial - http://www.yourepeat.com/watch/?v=mGlPXKJo_6U

 http://java.dzone.com/articles/creating-and-deploying-jax-ws

 http://www.myeclipseide.com/documentation/quickstarts/webservices_jaxws/

 http://tomee.apache.org/examples-trunk/simple-webservice/README.html

 MTOM - http://cxf.apache.org/docs/mtom.html,

 http://www.mkyong.com/webservices/jax-ws/jax-ws-attachment-with-mtom/

 JAX-WS annotations

http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.wsfe

p.multiplatform.doc%2Finfo%2Fae%2Fae%2Frwbs_jaxwsannotations.html

 Web Services FAQ: http://www.coderanch.com/how-to/java/WebServicesFaq

8 Acknowledgements
I extend special thanks and recognition to Eric Chen, Brian Yasaki, and Rachael Roth for their assistance

with this tutorial.

<SDG><

https://app.box.com/s/hrsog9afxg947kxd667i
https://app.box.com/s/0khzu76fniokkmop9gdf
https://app.box.com/s/1nj8h5v8po4gcxw28vot
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput.htm
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput_designing.htm
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput_security_settings.htm
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput_security_settings.htm
http://tomee.apache.org/
http://www.eclipse.org/
http://blog.sortedset.com/step-by-step-web-services-with-tomcat-tomee-apache-cxf-eclipse/
http://blog.sortedset.com/step-by-step-web-services-with-tomcat-tomee-apache-cxf-eclipse/
http://www.yourepeat.com/watch/?v=mGlPXKJo_6U
http://java.dzone.com/articles/creating-and-deploying-jax-ws
http://www.myeclipseide.com/documentation/quickstarts/webservices_jaxws/
http://tomee.apache.org/examples-trunk/simple-webservice/README.html
http://cxf.apache.org/docs/mtom.html
http://www.mkyong.com/webservices/jax-ws/jax-ws-attachment-with-mtom/
http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.wsfep.multiplatform.doc%2Finfo%2Fae%2Fae%2Frwbs_jaxwsannotations.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.wsfep.multiplatform.doc%2Finfo%2Fae%2Fae%2Frwbs_jaxwsannotations.html
http://www.coderanch.com/how-to/java/WebServicesFaq

