Captiva 7 Web Services Output
Tutorial

M. Scott Roth
Director of Technology

May 2014

Contents

R [0 1 o o (¥ ot o T FEU O USRS 1
B =1 1Y/ 1 ¢o] a1 411 o) SO TP O PPPPTUROPPTPPP 2
V=T o Y =T oY ol TSP SUSRUTUPPPRROt 2
3.1 WED SEIVICE DEBSIZN....viieiiciieie ittt e ettt e e et e e e et e e e e e bte e e e ebtaeesebaeeeeebteeesenstaeeesasteeeesastaeasnnes 3
3.2 Web Service IMplementation ... s e e 4
3.2.1 IncomingCaseDoCsWS INterface Classccccuveeeeiiieeecciee e e e e e 5
3.2.2 IncomingCaseDocs Implementation Classeeccuieeeeciiiee et e 6
3.2.2.1 getCaselnfo MEthOduiiiiiiiiee e e e st ae e e s areeeeas 7
3.2.2.2 validateCaselD Method........ccooiiiiiiiiieeciee ettt e st eeraee e saeeenes 8
3.2.2.3 impOrtFileTOCMS METRO.........viiiiiiiieeeeee e e e e e e e e eaaaeeeeas 8

3.2.3 IncomingCaseDocs Result Classes (POD) ...cc.ueecveeeiieeiiieeieeeeieeeeeeesteeeteeesreesreeesaaeesnee e 9
3.2.3.1 WSOCaseINfORESUIL Data Classc.eeeceeerieriiiieiiieeeeeesieesieessieeeeieeeseeeeseeessnaeesreeesaees 10
3.2.3.2 WSOValidateldResuUlt Data Class.........cccvvrieeiiiiriiieeeieenieesriesesteeereeeseeeseeeesseeesreeeseees 11
3.2.3.3 WSOIMPOrtRESUIt Data Class......cceeccureiiiiiiieeeiiiieeeiiieeeesreeeesree e e s ree e e snreeessabeeessnseeas 12

3.3 WeED Services DEPIOYMENTcccuiiie ettt e e e et e e e et e e e e ata e e e eeabaeeeesasaeeesannaeeaean 13
3.4 LAY] P PUPPPPPRRPUPPRE 13

N O T oAV D= = 1= ol o o) [T o) PP P PP PPPPPPPPTPIN 14
4.1 (07 o1 (0 =] o1 (o .Y PRSPt 14
4.11 FIOW <ttt ettt et e st et e s bt e s et e s be e sabe e e hbe e s be e e hteenabeeebaeenaree s 14
4.1.2 CUSTOM VAIUES ettt ettt ettt st et e st e st esateesbbeesabeeesbbeesabeesneeesabeeanes 16
4.1.3 A ValUE ASSISNMENTSuiiiiiiiiie ettt ettt e et e e e e bee e e e ebe e e e eeabaeeeeenbeeaeesntaeeeennsenas 16

4.2 PrOFIES ettt ettt et s e e st e e st e st e e abe e s be e e abeesateesbaeesbeeenns 18
4.2.1 IMAgE ProcesSOr Profile ...ciii it e e 18
4.2.2 (Do YL U o 0 =T o | A 5/ oY= 19
4.2.3 Standard EXPOrt Profile ...t e 20

4.3 Y T o (01Tl e o i TN =Y d o] o [PPSR 22
43.1 RYoF- [0] o4 0TSSP 23
43.2 ReadBarCode (IMage PrOCESSON).....cccuiiiiuiieiieeeiee ettt e steeecteeesteesteeesateesteeessaeesareessaeesareens 23
433 B T=T G o] o SRR 23
434 NUGNCEOCR ...ttt e e e e e ettt e e e e e e bbbttt e e e e e e e anbebeeeeeeeseannreneeaeeseannns 24
4.3.5 LOgResUItS (Standard EXPOIt)ccueeccueeiiieeiieeciee et e cteeesteeeeteesteeesaaeesbeeesnaeesaseesnaeesareens 25
4.3.6 V=T YT Y (ol T @ U] o o T | SRR 25
e T T R =Y 7= 17 [o TS 26
4.3.6.2 Validat@CaselnFoccccueiiuiiiiieiiieeeie ettt ettt e s st sbae e nanes 28
Y T8 T 14 ¢ o o T ol e T 1Y RPN 29

4.4 [D7=Y o1 037 1'0 1= o | F0 USRI 30

LT T T ==Y g o N 2 (T U PSPPSRt 30

5.1 BEEEY Wl 5 T TSN 30

5.2 K] 0] 1 1 P PSPPI OPTPPPPPPPRN 30
53) =0 e =T I TV TSSOSO 31
5.4 1A Y [o 1T 0 1) d = o PP 32
5.5 Complete RUN TRIOUEGN c....oiieee ettt e e e tte e e e e bt e e e s ebaee e e eenraeaeeanes 32
LS o o Tol [V11 o TSP PTTSRUTSRI 35
/2 0= (=1 =Y ol TSP PRPPPPPNt 37

I Yo (g o XNV [Te F= LT o a1t o] SR SUPSPRNt 37

Preface

| was recently asked to create a simple Captiva solution that allowed a client to scan documents, verify
the value of a barcode with a database, and export the scanned images to a content management
system. This is a capture process | have created many times using a combination of output modules and
enterprise export modules. However, the catch this time around was that all database and content
management system interaction had to be accomplished through web services and not the ODBC Export
module or an enterprise export module. In addition, it had be accomplished with no or minimal client-
side scripting.

Having never used the Captiva web service modules, nor created web services for Captiva to consume, |
started reading the Captiva documentation, the WSOutputScan sample Captiva Designer project, the
online Captiva forums, and Google hoping to find a comprehensive example. It didn’t take long to
exhaust these resources and gain no useable knowledge to help me get started.

This tutorial lays out, in a step-by-step fashion, my successful experience with Captiva’s Web Service
Output module. It is my contribution to the Captiva community to fill the need for a simple, web services
starter project. Hopefully you will find it helpful.

1 Introduction

Captiva 7 (as well as Captiva 6) includes the Web Services Output (WSO) module which allows Captiva
capture processes (a.k.a., CaptureFlows) to interface with external systems using SOAP-based web
services. This tutorial documents my experience using Captiva 7's WSO module. In particular, it
provides examples and best practices, and examines nuances for using web services and WSO.

The scenario for this tutorial is that of a law office that scans documents related to cases, verifies the
index data retrieved from an external system, and releases the scanned documents to a content
management system. The hardcopy documents are received by the office and barcode labels are affixed
to the documents to identify their case number in a pre-processing step. Captiva is used to scan the
documents, read the case number from the barcode, and retrieve case information from an external
case management system via web services. Case information is displayed to the Scan Operator for
verification. Ifitis incorrect, the Scan Operator can change the case number and retrieve the case
information again. After the case information is verified, Captiva exports the scanned documents to the
firm’s case management system and updates a simple log file recording the date and time of the scan.
Figure 1 depicts the high-level flow of this scenario.

d /
[Case info
i
.—Ir Barcodelatiicedic #=| Documents scanned = Barcode read —l-—l retrieved from [——— Case ID updated
decuments - |
CMS I\
A

7
i % | Documents |
: . 4—— Results logged -l—i exported to [4— Docurments OCRed

Case info

correct?
\.H___/J \ CMS *

/
| Case Info |I
| reverified * |I
\

* indicates web service ! |

Figure 1 Incoming Case Document Process Flow

The web services employed in this scenario simulate the actions they imply and simply return
reasonable values to the Captiva WSO module. What the web services do is irrelevant; the important
aspects of the tutorial are how to design, build, and configure the web services to be consumed by the
Captiva WSO module and how to configure the WSO module in the CaptureFlow.

This tutorial assumes competency with Eclipse, Java, Captiva modules, and Captiva Designer. | do not
explain how to use these tools other than to highlight important aspects or nuances concerning
implementation of the solution.

2 Environment

The computing environment | used to develop and test this tutorial consisted of a single, virtualized
server running: Windows 2008 Server, Microsoft SQL Server 2008, Captiva 7, Apache TomEE+ 1.6, Java
1.7, and Eclipse for Java EE developers 4.3 (Kepler).

Captiva was installed in an out-of-the-box configuration using SQL Server for its database. The following
Captiva modules were installed:

e EMC Captiva Designer e EMC Captiva Image Processor

e EMC Captiva ScanPlus e EMC Captiva NuanceOCR

e EMC Captiva Desktop e EMC Captiva Web Services Output
e EMC Captiva Administrator e EMC Captiva Standard Export

e EMC Captiva InputAccel Server

| used Apache TomEE+ as my application server for web services hosting. TomEE+ is Apache Tomcat
pre-configured to host web services and dynamic web applications. See the References section for links
to more information regarding TomEE+.

3 Web Services
When designing web services to use with Captiva WSO, there are a few important things to keep in
mind. First, Captiva WSO can only consume SOAP web services; RESTful web services are not supported.

Second, you need to know that the Captiva WSO module can only consume anonymous web services
that do not require Basic or Windows authentication before accessing the service. This does not mean
you can’t send credentials as input parameters to web services and have the service logic do
authentication. | simulate this idea later in the tutorial. Anonymous access web services mean any
user/process can request access to the web service. Think of it like allowing access to a public web
page. You have used anonymous web services and probably haven’t even realized it. For example,
anonymous web services can be used to report weather conditions and look up ZIP codes. Many of the
apps on your smartphone use these kinds of services to find nearby restaurants and movie listings.

You can safeguard your web services to some degree by using network security techniques like IP
filtering, so only connections from the Captiva WSO server are accepted by the web services server. See
the References section for more information regarding anonymous web services, and secure
connections using SSL. By default, TomEE+ hosts anonymous web services that do not require
authentication.

Lastly, the Captiva WSO module has no problem consuming web services that return primitive types:
Boolean, String, int. However, it does not seem to consume collections well, which can present a
problem if your services return something more complex than a primitive type. For example, in my

scenario, the getCaseInfo () web method' returns an array of Strings containing a case’s ID,

name, plaintiffs, and defendants. Returning these Strings asa List<String> (whichis a valid

JAX-WS type), results in the WSO module’s inability to even map the result to IA values. My solution to

this limitation is to wrap all web methods that return a complex type in a Plain Old Data class’.

By having all of my web methods return an object, | can return multiple variable types to the Captiva
WSO module from a single web method. As noted above, the getCaseInfo () method returns
several Strings, one of which is a status message from the web service that can be mapped to an IA

value. For example, if the method encounters an error and can’t return the case info, instead of

“silently failing”, it returns a message that is mapped to an IA value that can be discovered by the scan

operator or the Captiva administrator.

The following sections discuss the web services | built for this tutorial to simulate interaction with

external systems. They all return an object as a result. The importFileToCMS () method even

simulates sending the scanned documents to a case management system using MTOM (Message

Transmission Optimization Mechanism).

3.1 Web Service Design

Table 1 defines the web method interfaces designed to meet the requirements of the scenario.

Table1 IncomingCaseDocs Web Services Definitions
Web Method \ Input Arguments Return Values Purpose \
getCaselInfo String caseld WSOCaseInfo Simulates retrieving
Result data from the case
management system
validateCaseId String caseld WSOValidateCaseId | Simulates the validation
Result of the case Id with the
case management
system
importFileToCMS | String username, WSOImportFile Simulates importing the
String password, |Result scanned document into
String caseld, the case management
String filename, system using MTOM
byte[] filedata

The logic for each interface, method, and data class are described in the following section.

1 In general, | consider a web service to be an interface which describes a collection of operations that can be
accessed through SOAP messages. A web method is a component of a web service. The web service is called via
SOAP, where the web method is called by proxy from the web service. | try to use these terms in their proper
manner in this tutorial, but may occasionally use them synonymously.
2 A Plain Old Data (POD) class is nothing more than a wrapper around a data structure with getters and setters.
The limitations addressed by these POD objects can also be addressed by using additional JAX-WS annotations in
the method definitions, but it seemed easier to use PODs and let JAX-WS generate the necessary XML

automatically.

3.2 Web Service Implementation

The web services are implemented using an Eclipse Dynamic Web Project. The project contains six
classes:

e TIncomingCaseDocs — This class contains the implementation and the simulated logic for all
of the methods listed in Table 1. The details of each class follow in subsequent sections of this
tutorial.

e TIncomingCaseDocsWS — This is the interface class for the web services and contains the
interface contracts listed in Table 1 as well as all of the necessary annotations to make the
services and data elements visible to Captiva WSO.

e WSOCaseInfoResult — This data class contains the results that are returned when the
getCaseInfo () methodis called.

e WSOValidateCaseIdResult —This data class contains the results that are returned when
the validateCaseId () method is called.

e WSOImportFileResult —This data class contains the results that are returned when the
importFileToCMS () method is called.

e WSOTest —This class is a simple unit test class for the methods in IncomingCaseDocs.

Figure 2 depicts the Navigator view of the Eclipse project.

Elﬁ IncomingCaseDocs
F-[= settings
- build
- lib
== sre
E-E= com
B dm_misc
B captiva
- wso
- test
- - [J] wsOTest.java
----- m IncomingCaseDocs.java

------ m IncomingCaseDocsWS, java

------ El WsOCaseInfoResult.java

------ m WSOImportResult. java

------ [J] wsovalidateldResult.java
E-= WebContent
(-2 META-INF
== WEB-INF
E, lib
2 wsd)
----- |%] .dasspath
----- |X| .project
F-1= Servers

Figure 2 Eclipse Dynamic Web Project Structure

3.2.1 IncomingCaseDocsWS Interface Class

The interface class contained in Listing 1 describes the web service method contracts as specified in
Table 1. It also contains the annotations necessary to make the web methods visible and consumable
by Captiva WSO.

Listing 1 IncomingCaseDocsWS Interface Class
package com.dm misc.captiva.wso;
import javax.jws.WebMethod;
import Jjavax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;

@WebService (targetNamespace = "http://dm misc.com/wsdl")
public interface IncomingCaseDocsWS ({

@WebMethod (operationName="getCaseInfo",
action="http://dm misc.com/wsdl/getCaseInfo")
@WebResult (name="caselInfo")
public WSOCaseInfoResult getCaseInfo (
@WebParam (name="caseId") String caseld);

@WebMethod (operationName="validateCaseId",
action="http://dm misc.com/wsdl/validateCaseId")

@WebResult (name="isValid")

public WSOValidateIdResult validateCaseId (
@WebParam (name="caseId") String caseld);

@WebMethod (operationName="importToCMS",
action="http://dm misc.com/wsdl/importToCMS")

@WebResult (name="importResult")

public WSOImportResult importToCMS (

@WebParam (name="username") String username,

@WebParam (name="password") String password,

@WebParam (name="caseId") String caseld,

@WebParam (name="filename") String filename,
(

@WebParam (name="filedata") byte[] filedate);

Note the @annotations used in describing the interfaces:

e (@QWebService —This annotation declares the interface to be a JAX-WS web service. It also

defines a name space for the service. You will see this value used in the WSDL file to scope each

element.

e (@WebMethod — Each public, callable method is declared as a web method, and given an
operation name and an action URI. You will see the operation names defined here when we

access the web service WSDL from Captiva WSO (Section 4.3.6). The action URIs are used in the

WSDL to map the operations to the web methods.
e (@WebResult — This annotation gives a meaningful name to the result value. Again, you will
see this in Section 4.3.6 when we map the web method results to IA values.

e (@WebParam — This annotation gives each web method’s input parameters a descriptive name
that is visible when mapping the IA values to the web method calls (see Section 4.3.6). Without
these annotations, the input parameters are simply labeled as arg0, argl, etc.

3.2.2 IncomingCaseDocs Implementation Class

The IncomingCaseDocs class contains the implementation logic for the web methods described by
the IncomingCaseDocsWS interface class discussed in Section 3.2.1. Mostly these are “mock
methods” that simply return reasonable values without actually doing anything. However, some error
checking is performed to ensure Captiva is sending and receiving valid data and to test the use of the
message result value in each POD class.

Listing 2 contains the first few lines of the ITncomingCaseDocs class file with the necessary web
service annotations. Each method of this file is discussed individually in subsequent sections.

Listing 2 IncomingCaseDocs Implementation Class
package com.dm misc.captiva.wso;

import Jjava.io.BufferedOutputStream;
import java.io.FileOutputStream;
import javax.jws.WebService;

import javax.xml.ws.soap.MTOM;

@MTOM
@WebService (
portName = "IncomingCaseDocsPort",
serviceName = "IncomingCaseDocsService",
targetNamespace = "http://dm misc.com/wsdl",
endpointInterface = "com.dm misc.captiva.wso.IncomingCaseDocsWS")

public class IncomingCaseDocs implements IncomingCaseDocsWS ({

There are only two annotations required in this file:

e @MTOM — This annotation tells the web service to expect binary data to be sent unencoded.
Generally, this is a more efficient way to transport binary data (i.e., file content) than just plain
SOAP. This annotation is required for the importFileToCMS () method discussed in Section
3.2.2.3.

e (@WebService —This is the same annotation we saw in the definition of the
incomingCaseDocsWS interface class (Section 3.2.1), but with a few new arguments. The
arguments shown here are all used to properly generate the WSDL file.

o portName — The name of the web service port as it will appear in the WSDL. You can
choose any name you like for your port, but common convention dictates that you add
the word ‘Port’ to the end of the class name.

o serviceName — The name of the web service as it will appear in the WSDL. You can
choose any name you like for your web service, but common convention dictates that
you add the word ‘Service’ to the end of the class name.

o targetNamespace — It is critical that the namespace defined here matches the
namespace defined in the incomingCaseDocsWS interface class. Note: | found that
any targetNamespace that did not end with ‘/wsd1’ would not produce a WSDL
file readable by Captiva WSO.

o endpointInterface —Thisis the fully qualified name of the web services interface.

3.2.2.1 getCaselnfo Method
The getCaseInfo () method is shown in Listing 3. The method’s logic is straightforward:

e it receives a case ID, which it validates (the details of validation are discussed in Section 3.2.2.2);

e after validation, it defines a set of mock case data depending upon whether the case ID is an
even or odd number;

e itthenreturnsa WSOCaseInfoResult object containing the case data (see Section 3.2.3.1).

If the case ID is valid, the message returned in the WSOCaseInfoResult objectis “Success”. If the
case ID was not valid, the message returned is the message generated by the validateCaseId ()

method.

Listing 3 getCaselnfo Method
public WSOCaseInfoResult getCaselInfo (String caseld) {
int id;
String name;
String plaintiff;
String defendant;

// make sure case Id is valid
if (validateCaselId (caselId) .isValidId()) {

// return one of two sets of data based on even/odd case id

id = Integer.parselnt (caseld) ;

if (id $ 2 == 0) {
name = "Allegiance Insurance Co. vs. Molly Peters";
plaintiff = "Allegiance Insurance Co.";
defendant = "Molly Peters";

} else {
name = "Rate Hikes by Allegiance Insurance Co.";
plaintiff = "Molly Peters, John Spivy, and the Arizona Insurance

Board.";

defendant = "Allegiance Insurance Co.";

}

} else {

wn wn wn
4

return new WSOCaseInfoResult (caseld,
validateCaselId (caseld) .getMessage()) ;

}

return new WSOCaseInfoResult (caselId, name, plaintiff, defendant,
"Success") ;

3.2.2.2 validateCaselD Method
Listing 4 contains the code for the validateCaseId () method. A valid case ID meets three simple

criteria:

e itis not null or empty,
e itis greater than 4 digits long (leading zeroes are ignored),
e it contains only numeric characters.

Listing 4 validateCaseld Method
public WSOValidateIdResult validateCaseId(String caseId) {

// if case id is longer than 4 digits and contains only numbers
// it is wvalid
if ((caseId == null) || (caseId.length() == 0))

return new WSOValidateIdResult (false,"Case Id is null");

try {
long i= Integer.parselnt (caseld) ;
if (1 > 9999) {
return new WSOValidateIdResult (true,"valid") ;
} else {
return new WSOValidateIdResult (false,"Case Id too short"):;

}
} catch (Exception e) {
return new WSOValidateIdResult (false,"Case Id is not numeric: " +
caseld) ;

Using Integer.parseInt () kills two birds with one stone: if the conversion produces an
exception, the case ID contains a non-numeric character; and if the converted number is less than
10,000 it is too short.

3.2.2.3 importFileToCMS Method

The importFileToCMS () method in Listing 5 simulates importing the scanned files into a case
management system and returns a unique ID for each file imported. The method implements the
following logic:

e validate the case ID,
e validate the password (“captiva”), and
e save the file streamed to the method using MTOM to the c: /temp directory.

Listing 5 importFileToCMS Method

public WSOImportResult importToCMS (String username, String password,
String caseld, String filename, byte[] filedata) {

String filePath = "c:/temp/" + filename;
String fileId = "";

// validate case Id
if (! validateCaseId(caseId) .isValidId()) {

return new WSOImportResult (false,null,"Invalid case ID.");

// simulate logging in with username and password
if (! password.equalsIgnoreCase ("captiva")) {
return new WSOImportResult (false,null,"Invalid user password");

if (filedata !'= null) {
fileId = "" + System.currentTimeMillis()
try {

FileOutputStream fos = new FileOutputStream(filePath) ;
BufferedOutputStream outputStream = new BufferedOutputStream (fos) ;
outputStream.write (filedata) ;
outputStream.close () ;
} catch (Exception e) {
return new WSOImportResult (false,null,"Error importing " + filename
+ " to case " + caseld);

}

return new WSOImportResult (true,fileld, "Successfully imported " +
filename + " to case " + caselId + " as " + fileld);
} else {
return new WSOImportResult (false,null,"No file transfered");

}
}

In this method, | simply compare the password passed into the method to the string “captiva” to
authenticate the user. This is obviously not a practice you want to implement in real life; however, |
hope it gives you some ideas for how you could implement real authentication. For example, you could
pass in a security token or encrypted credentials and have the method perform real authentication with
Active Directory or the case management system. The EMC Captiva Capture Web Services Guide also
discusses how you can use Captiva WSO with SSL, further securing your credentials.

The file content is passed to the web method using the MTOM protocol mentioned in Section 3.2.2. The
incoming parameter type is byte []. Nothing else needs to be done to transfer the file. As you will see
in Section 4.3.6.3, when we configure the Captiva WSO module to use this web method, we simply map
a binary output IA value from Captiva to the byte [] input parameter of the web method and
SOAP/MTOM takes care of the rest.

A unique file ID is fabricated to simulate interaction with the case management system by getting the
system time. The file ID is logged later in the process for auditing purposes (see Section 4.2.3).

3.2.3 IncomingCaseDocs Result Classes (POD)

The most important aspect of these web services are the POD classes they return. | have created a POD
class for each web method, primarily so | could return complex results and a message to the calling
Captiva WSO module. These classes contain String data fields with getters/setters, and their purpose
is to simply encapsulate the values passed into them and make them accessible via the WSDL.

3.2.3.1 WSO0CaselnfoResult Data Class
The WSOCaseInfoResult class returns five Strings (see Listing 6):

e caseId-The D forthe case. Thisis the same value that was passed into the method from the
document’s barcode.

e caseName — The name of the case in the case management system.

e casePlaintiff —The list of case plaintiffs in the case as a single String.

e caseDefendant —The list of case defendants in the case as a single String.

e message — A message to be returned to the Captiva WSO module.

Listing 6 WSOCaselnfoResult Data Class
package com.dm misc.captiva.wso;

public class WSOCaseInfoResult {

private String caseld;
private String caseName;
private String casePlaintiff;
private String caseDefendant;
private String message;

public WSOCaseInfoResult (String id, String name, String plaintiff,
String defendant, String msg) {

caseld = id;

caseName = name;
casePlaintiff = plaintiff;
caseDefendant = defendant;

message = msg;

}

public String getCaseId() {
return caseld;

}

public String getCaseName () {
return caseName;

}

public String getCasePlaintiff () {
return casePlaintiff;

}

public String getCaseDefendant () {
return caseDefendant;

}

public void setCaseld(String caseld) {
this.caseld = caseld;

}

public void setCaseName (String caseName) {
this.caseName = caseName;

}

public void setCasePlaintiff (String casePlaintiff) {
this.casePlaintiff = casePlaintiff;

}

public void setCaseDefendant (String caseDefendant) {
this.caseDefendant = caseDefendant;

}

public String getMessage () {
return message;

}

public void setMessage (String message) {
this.message = message;
}
}

3.2.3.2 WSOValidateldResult Data Class
The data fields contained in the WSOValidateIdResult class (see Listing 7) are:

e validId(boolean)—Thisindicates whetherthe case ID is valid or not.

e message (String)— A message to be returned to the Captiva WSO module.

Listing 7 WSOValidateCaseldResult Data Class
public class WSOValidateIdResult {

private boolean validId;
private String message;

public WSOValidateIdResult (boolean result, String msqg) {
validId = result;
message = msg;

}

public boolean isValidId() {
return validId;

}

public String getMessage () {
return message;

}

public void setValidId (boolean validId) {
this.validId = validId;
}

public void setMessage (String message) {
this.message = message;

}

3.2.3.3 WSOImportResult Data Class
The WSOImportResult class (shown in Listing 8) contains data fields for:

e importSuccess (boolean) - Thisindicates whether the import to the case management
system was successful.

e importedFileId (String)—Thisis a fabricated ID to simulate interaction with the case
management system.

e message (String)— Thisis an error or success message to be returned to the Captiva WSO
module.

Listing 8 WSOImportFileResult Data Class
package com.dm misc.captiva.wso;

public class WSOImportResult ({

private boolean importSuccess;
private String message;
private String importedFileId;

public WSOImportResult (boolean result, String fileId, String msg) {
importSuccess = result;
message = msg;
importedFileId = fileId;

}

public boolean isImportSuccess() {
return importSuccess;

}

public String getMessage () {
return message;

}

public String getImportedFileId() {
return importedFileId;

}

public void setImportSuccess (boolean importSuccess) {
this.importSuccess = importSuccess;

}

public void setMessage (String message) {
this.message = message;

}

public void setImportedFileId(String importedFileId) {
this.importedFileId = importedFileId;
}

3.3 Web Services Deployment
To deploy the web service, simply export the IncomingCaseDocs project from Eclipse as a WAR file,
and place it in the TomEE+ /webapps directory. The content of the WAR file is listed in Listing 9 .

Listing 9 IncomingCaseDocs WAR File
IncomingCaseDocs
IncomingCaseDocs \META-INF
IncomingCaseDocs\WEB-INF
IncomingCaseDocs\META-INF\MANIFEST .MF
IncomingCaseDocs\WEB-INF\classes
IncomingCaseDocs\WEB-INF\1lib
IncomingCaseDocs\WEB-INF\wsdl
IncomingCaseDocs\WEB-INF\classes\com
IncomingCaseDocs\WEB-INF\classes\com\dm misc
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captiva
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captival\wso
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captival\wso
\IncomingCaseDocs.class
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captiva\wso
\IncomingCaseDocsWS.class
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captiva\wso
\WSOCaseInfoResult.class
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captival\wso
\WSOImportResult.class
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captiva\wso
\WSOValidateIdResult.class
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captiva\wso\test
IncomingCaseDocs\WEB-INF\classes\com\dm misc\captiva\wso\test\WSOTest.class

3.4 WSDL

Notice that there is no WSDL file listed in Listing 9 . The Captiva WSO module requires a WSDL file to
map input and output parameters. So, where is the WSDL file? JAX-WS web services do not require a
WSDL file to be created at compile time; one is generated automatically upon request at runtime. JAX-
WS generates the WSDL file based upon reflection and the @annotations in the class files. That said,
it can be difficult to determine the WSDL URL required by Captiva WSO.

The easiest way to find the WSDL URL is to look in the TomEE+ Catalina. log file. Find an entry
similar to this after you deploy the WAR file and start the TomEE+ server:

INFO: Webservice (wsdl=http://localhost:8080//IncomingCaseDocs/
IncomingCaseDocsService, gname={http://dm misc.com/wsdl}

From this log entry, you can discern that the WSDL URL is:
http://localhost:8080//IncomingCaseDocs/IncomingCaseDocsService?wsdl

Keep this value handy for configuring the Captiva WSO module discussed in Section 4.3.6.

4 Captiva Designer Project

Now that the web services are in place, we can turn our attention to the Captiva CaptureFlow required
for this tutorial. This section describes the Captiva Designer project and the module configurations that
support the scenario discussed in Section 1. The project contains the following components:

e Image Processing Profile
o ReadBarCode — The Image Processor profile for reading the barcodes from the incoming
documents.
e Document Types Profile
o CaseDocument — The Document type defining metadata fields to support the
CaptureFlow and document export process.
e Export Profile
o LogCaseDocumentExportToCMS — The Standard Export profile to log metadata regarding
scan and export.
e CaptureFlow
o IncomingCaseDocument — The CaptureFlow implementing the process described in
Figure 1 and containing the necessary logic and IA values to integrate the modules.

Each of these components is described in the following sections.

4.1 CaptureFlow

The CaptureFlow is essentially the heart and soul of the capture process and gives context to the rest of
tutorial’s discussion. The following sections describe the CaptureFlow, the modules used, the Custom
Values defined, and all of the IA value assighments necessary to implement the business process
discussed in Section 1.

4.1.1 Flow

The Captiva Designer project contains a single CaptureFlow named IncomingCaseDocument,
depicted in Figure 3 . Table 2 lists the process steps and corresponding Captiva modules used to
implement each step depicted in the figure.

Table 2 Process Step Definitions

Process Step ‘ Module Type ‘ Trigger Level Remarks
ScanPlus ScanPlus Batch (7) See Section 4.3.1 for configuration details.
ReadBarCode Image Page (0) Profile: ReadBarCode. See Section 4.2.1 for
Processor configuration details.

GetCaselnfo WSO Document (1) | See Section 4.3.6.1 for configuration details.

Desktop Desktop Document (1) | See Section 4.3.3 for configuration details.

ValidateCaselnfo WSO Document (1) | See Section 4.3.6.2 for configuration details.

Is Case Invalid Decision Document (1) | The decision uses the test:
CustomValues:1l.isCaselIdValid =
false.

Jump To: Desktop Jump Document (1) | No additional configuration.

NuanceOCR Nuance OCR Document (1) | See Section 4.3.4 for configuration details.

Process Step

\ Module Type \ Trigger Level

CENERS

ImportToCMS WSO Document (1) | See Section 4.3.6.3 for configuration details.
LogResults Standard Batch (7) Profile: LogCaseDocumentExportToCMS. See
Export Section 4.2.3 for configuration details.

Create Batches From
Create

M ScanPlus

“\h For each Batch

]

y a For each Page

l, 1 Value

‘ l“% GetCaselnfo

Faor each Document

* I Values

o)
Feor each Document

From: Jump 1 1value

‘ ";‘% ValidateCaselnfo

For each Document

0 Values

Document (Level 1 }\
() Default

w

0 Values

l, 1 Value

l o Add Branch

(1) s Case Invali

1 8 Values
Jump
To: Desktop

0@ NuanceDCR
) Faor each Document

l, 2 Values

ImporiToCMS
s

For each Document

l, 0 Values

LogResults
& For each Batch

0 Values

End Do Mot Delete Batch

Figure 3

IncomingCaseDocs CaptureFlow

4.1.2 Custom Values
Table 3 describes the Custom Values defined in the CaptureFlow and their purposes.

Table 3 Custom Value Definitions

Custom Value

Remarks

CaseNumber CustomValues | String 1 Holds the case ID read from the
barcode.

CaseName CustomValues | String 1 Holds the case name retrieved by the
web service.

Plaintiff CustomValues | String 1 Holds the plaintiffs’ names retrieved
by the web service.

Defendant CustomValues | String 1 Holds the defendants’ names
retrieved by the web service.

FileName CustomValues | String 1 Holds the name of the file as it will
appear in the case management
system.

isCaseIdValid | CustomValues | String 1 Holds the result of the
ValidateCaselnfo process step.

isExportOk CustomValues | String 1 Holds the result of the ImportToCMS
process step.

ImportedFileId | CustomValues | String 1 Holds the file ID returned from the
case management system as a result
of the import.

Password CustomValues | String 1 Holds the password for the
username required to import file to
case management system.

ServerMsg Custom Values | String 1 Place holder for informational
messages returned by web services.

Username CustomValues | String 1 Holds the scan operator’s name.

4.1.3 1A Value Assignments

Table 4 describes the Custom and IA value assighnments made in the CaptureFlow. As you will see, the

purpose of these assignments is to capture metadata about the process and the scanned documents,

and to link the various CaptureFlow components together by passing data among them.

Table 4

Occurs

IA Value Assignments
Where Assignment

Assignment

Remarks

ReadBarCode:0.InputImage =
ScanPlus:0.0utputImage

Send each scanned page to
the ReadBarCode module.
Capture the scan operator’s
name.

Get the case number (case ID)
from the barcode. Ensure it is
the first barcode on the first
page only.

ScanPlus — ReadBarCode

CustomValues:1.Username =
ScanPlus:0.ScanOperator

CustomValues:1.CaseNumber =
ReadBarCode:0.Barcode(l Text
when node:0.NodelIndexFromLl
=0

ReadBarCode -
GetCaselnfo

Where Assignment
Occurs

GetCaselnfo — Desktop

Assignment

Desktop:0.Image =
ReadBarCode:0.0utputImage

Remarks

Send each page to Desktop for
viewing and processing.

Desktop:1.UimDocumentType =
“CaseDocument”

Manually assign the document
type since we are not using
classification and don’t want
the scan operators to have to
do it manually in Desktop.

Desktop:1.UimDataImportMode =
1

Tell Desktop to accept the
following data.

Desktop:1.$Runtime.InUimData
CaseNumber = CustomValues:1.
CaseNumber

Pre-populate the Case
Number field with the case
number read from the
barcode.

Desktop:1l.$Runtime.InUimData
CaseName = CustomValues:1.
CaseName

Pre-populate the Case Name
field with the case name
retrieved by the GetCaselnfo
step.

Desktop:1l.$Runtime.InUimData
Defendant = CustomValues:1.
Defendant

Pre-populate the Defendant
field with the defendant
retrieved by the GetCaselnfo
step.

Desktop:1l.$Runtime.InUimData
Plaintiff = CustomValues:1.
Plaintiff

Pre-populate the Plaintiff field
with the plaintiff retrieved by
the GetCaselnfo step.

Desktop - CustomValues:1.ServerMsg = “” | Clear any message from a
ValidateCaselnfo previous WSO call.
. NuanceOCR:0.LevelO InputImage | Passeach page from the
ValidateCaselnfo = = Desktop:0.Image Desktop to be OCRed and
NuanceOCR

converted to PDF.

Is_Case_Invalid — Jump
To: Desktop

Desktop:1.UimbDataImportMode =
1

Tell Desktop to accept the
following data.

Desktop:1l.$Runtime.InUimData
ServerMsg = CustomValues:1.
ServerMsqg

Pre-populate the Error Msg
field with any messages
returned from the previous
WSO call.

Desktop:1.SRuntime.InUimData
CaseNumber = CustomValues:1.
CaseNumber

Pre-populate the Case
Number field with the case
number previously entered.

Desktop:1.$Runtime.InUimData

Pre-populate the Case Name
field with the case name
previously entered.

CaseName = CustomValues:1.
CaseName
Desktop:1.$Runtime.InUimData
Defendant = CustomValues:1.
Defendant

Pre-populate the Defendant
field with defendant
previously entered.

Where Assignment Assignment Remarks
Occurs
Desktop:1.SRuntime.InUimData | Pre-populate the Plaintiff field
Plaintiff = CustomValues:1. with the plaintiff previously
Plaintiff entered.
Desktop:1l.SRuntime.InUimData | Reset the password on the
Password = “” Desktop screen.
CustomValues:1.Password = “” | Resetthe password in the
Custom Values forcing the
user to re-enter it.
CustomValues:1.FileName = Build the filename to be used
"CaseDoc-" & during the import to the CMS.
CustomValues:1.CaseNumber &
NuanceOCR - " " & Batch.BatchID & " " &
ImportToCMS _Node:1.NodeIndexFromL7 + 1 &
".pdf"

\\ 77

CustomValues:1l.serverMsg =

Clear any message from a
previous WSO call.

4.2 Profiles

Some of the modules in this CaptureFlow are configured using profiles. Profiles are new in Captiva 7 and

allow you to setup configurations for certain modules that can be reused in other CaptureFlows. For

this tutorial, we will setup profiles for the Image Processor, the definition of the Document Type (this
includes the index fields the user will fill), and Standard Export. Each of these profiles is discussed in

more detail in the following sections.

4.2.1

Image Processor Profile

The Image Processor profile, ReadBarCode, contains a single filter for reading barcodes, as depicted in

Figure 4 .

:i EMC Captiva Designer - Image Processing

EMC Captiva Designer

. e |
r2¥eal
U

Test Images: C:\Users\captiva\Documents\Captiva 7.0\samples\Images‘\production auto leaming

=loix|

WSOExample: Default (Connected) _|:| B, H. .

\ >

System Filters (1) | Annotations (0)
Inches v
o - - > -
1. Detect Barcodes d ~
-
pose ?
Image
FONETEALY Orientation |Horizontal and Vertical | 2
'y “& |¥] Decode 5 < |
: |1 Exact length: 3 Template_A_image_LTIF 100% -
Image

Conversion haracters
I 100
(U*;;_J
- | Min. height, in.
Recognition
Scan Distance (1D) II'
!
1 J 10
"] use Checksum
Document
Types Barcode Types
|¥] addon2
= |¥] addons
'\(_); - |#] AustralianPost
Export |¥] BCDMATRIX
|¥] codabar
|#] Code25Datalogic
5“_ [¥] Code2514TA
-
[¥] Codez5Industrial
ELIEER I [¥] Codez5Interleaved
[¥] Codez5Invert

——

Compare Side-By-Side v|| Save Results |

15153 Ash Avenue
Plymouth, MA 02360
(888) 623-1423
(888) 6231412

TO

Chad Lane
Eisenhower Software
101 Presidential Way
San Diege, CA 91231
619-910-1897

v o |

ALLEGIANCE INSURAN

Insurance Made Simple

ALLEGIANCE INSURAN
Insurance Made Simple

15153 Ash Avenue
Piymouth, MA 02360
(888) 623-1423
(888) 623-1412

TO

Chad Lane
Emsenhower Software
101 Presidential Way
San Diego, CA 81231
6199101897

% B >

4.2.2 Document Type

Figure 4

ReadBarCode Profile

This tutorial’s single document type, CaseDocument, contains six metadata fields, as defined in Table 5.

Table 5 CaseDocument Fields

Field Name Data Type Input Mode Index Remarks
Level
CaseNumber String / | Editable / |1 Contains the case ID as read from the
Text Required barcode.
CaseName String / | Read-Only 1 Contains the case name as returned
Text by the GetCaselnfo step.
Plaintiff String / | Read-Only 1 Contains the plaintiffs’ names as
Text returned by the GetCaselnfo step.
Defendant String / | Read-Only 1 Contains the defendants’ names as
Text returned by the GetCaselnfo WSO
step.
Password String / | Editable / |1 Password used to import the scanned
Text Required documents into the case
management system.

Field Name Data Type Input Mode Index Remarks

Level
ServerMsg String / | Read-Only 1 Place holder a message returned by
Text any of the WSO steps.

These fields all map directly to the Custom Values discussed in Section 4.1.2. To ensure smooth
exchange between document field values in Desktop and Custom Values in the CaptureFlow, their
names and index levels are exactly the same in both locations.

The first four fields, CaseNumber, CaseName, Plaintiff, and Defendant, are obvious as to their
purpose. The getCaseInfo () web method will fill these fields with the results of its query. The last
two fields, Password and ServerMsg, are perhaps a little less obvious.

| included the Password field as a field the user must complete in order to successfully import the
document into the case management system. If the user enters anything other than “captiva” the
import will fail with an “Invalid password” error. This is part of the simulation of passing user credentials
to a web service and having the web service do authentication with an external system. Obviously this is
not a realistic implementation, but allows you to easily trace the user’s entry here, to the web service
call, and ultimately to the success of the process.

The purpose of the read-only ServerMsg field is to display informational messages returned from the
web service. For example, it the caseId contains a non-numeric character, the document will be
returned to the Desktop with the error “Case ID is not numeric.” |have included this
capability as another example to highlight the value of returning complex types from your web methods.
In doing so, | can return the Strings that populate the Desktop fields, as well as a Boolean to
indicate whether the caseId was valid, and an informational message. Figure 18 in Section 5.5
contains a depiction of the Desktop displaying an error message.

4.2.3 Standard Export Profile

The IncomingCaseDocs CaptureFlow uses one Standard Export profile, LogCaseDocumentExportToCMS.
The LogCaseDocumentExportToCMS profile writes metadata values to a CSV file as a record of what was
scanned and what was imported into the case management system. Figure 5 depicts this profile’s
configuration in Captiva Designer.

ARMEDIA WHITE PAPER

EMC Captiva Designer - Export ;Iglil

EMC Captiva Designer .WSOExample: Default (Connected) |_.",| #. . 2.

o e
a

Node-Selection Filters and Exports (7) Intended CaptureFlow |[NDnE) V| Minimum Task Level |7

System
Filter: All
- Export: CSV Each Level: To: At path: ci\temp'casedoc_{5|_Batch.BatchID}.log
- Comment:
Image
Processing CSV Export Configuration (Intended Document Type: CaseDocument) - | [m] il
R Content Advanced
2 J
- Column Separator Create Row For Each Level
Image
Conversion
Column Name Column Value

. b Date of Scan {S5|5canPlus:0.Date}
"
Recaiai Batch 1D {5|_Batch.BatchID}
Scan Operator {5|5canflus:0.5canCperator}
{5|Customvaluss.CaseNumber}
N {5|_Node:1.NumChildrenAtL0}
T CMS Doc Name {5|CustomValues.FileMams}
Types CMS Doc ID {5|Customvaluss. ImportedFileld}

<New Column=

Move Up Move Down Delete 7 items

:

.=

CaptureFlow

Add Filter Add Export Move Up Move Down Delete 1 Filters, 1 Exports
[|

Figure 5 LogCaseDocumentExportToCMS Standard Export Profile

Figure 6 depicts the error handling for the LogCaseDocumentExportToCMS profile.

Captlva 7 Web Services Output Tutorlal 21

ﬁ 5V Export Configuration (Intended Document Type: CaseDocument) - | Ellil

Content Advanced

Property

Errcr Handling

Error Retry Count

File Encoding

Write Header

Identifier

Docurment Type

Value

—

File Exists Handling | append w

UTF-8 v
v

—

CaseDocumer | v

Tips

Abort puts the task in error. Skip stops processing for the
current file (node) and continues with the next one.

When an error is encountered, the system will retry the
specified number of times before going to Error Handling.

Choose Error to use the method specified in Error Handling.
Rename will append a 3 to 20 digit number to the base name.

Choose System to use the default codepage of the operating
system running the client.

If checked, the column names will be written as the first line of
the output. If & file is appended, the header will also be
included.

The Identifier is used to generate cutput values. Leave it blank if
the output values are not nesded. The Identifier can start with
ASCIT alphabetic characters and contain alphanumeric. It must
be less than 64 bytes long. The Identifier should be unigue
across all commands.

Document type is used to provide a choice list of fields within a
document type when used with an expression.

(0] | | Cancel

Figure 6 LogCaseDocumentExportToCMS Advanced Tab

See Figure 20 in Section 5.5 for an example of this profile’s output.

4.3 Module Configurations
Now that we have created the necessary Profiles, we will assign them to the appropriate CaptureFlow
process modules, and configure those modules that do not utilize profiles. Configuring modules is
accomplished using the CaptureFlow Designer in Captiva Designer. Simply click the down error on a
process icon and select Module Settings from the pop-up menu. See Figure 7 for an example.

l 2 Values

3 ReadBarCode -
' 4 For each Page Module Settings
l 1Value Step Properties
“é" GetCaselnfo R—
> For each Document
\ Level »
l 7 Values - e
o epartmen
Eﬁ Desktop i
For each Document TN,
From: Jump l 1 Value Remove scripting
“" ValidateCaselnfo v
W For each Document
l 0 Values
Figure 7 CaptureFlow Module Configuration

The following sections discuss the configuration for each of the process modules listed in Table 2 in
Section 4.1.1. ltis important to note that for the modules that do not use profiles, the module will be
launched in “Setup Mode” to facilitate configuration. That said, the modules must reside on the
computer from which they are being configured. This is not an issue in an environment such as mine
where everything is self-contained. However, this can cause real headaches in a multi-server
environment.

4.3.1 ScanPlus
The ScanPlus module is used out-of-the-box with no special configuration except the following:

e A scanner was configured.
e On the Auto Batch Creation tab:
o The Batch name schema was defined as follows:
IncomingCaseFile @ (Name) @ (Now)
o Process schema: IncomingCaseDocument

4.3.2 ReadBarCode (Image Processor)
The Image Processor module is configured to use the ReadBarCode Image Processing profile we
created in Section 4.2.1.

4.3.3 Desktop
The Desktop module is configured as depicted in Figure 8 Note the following settings:

e View Mode: Tmage and Form

e Work Level: Document

e Output IA Value Destination: CustomValues
e Output Dynamic Values: checked

e OQOutput Array Fields: Value Per Row

:ﬁ Captiva Desktop Setup- IncomingCaseDocument, Desktop - |E||5|

Property Walue | Tip

View and Navigation

WView Mode Image and Form j Defines what the operator sees in the validation window.

Work Level Dacument j Determines the work items for the step.

Image Snippets - Displays small image snippets near validation fields in form
view,

Show Manual Confirmation ~ Displays fields requiring manual confirmation to the operator as
work items.

Show Flags I~ Displays flags at the selected validation level to the operator as
work items.

Permissions

Edit Fields 7 Allows the operator to edit form data.

Edit Images 7 Allows the operator to rotate images.

Annotate Images 7 Allows the operator to annotate images.

Mowve Pages ~ Allows the operator to cut, copy, and paste pages within and
between documents.

Delete Pages & Allows the operator to delete unnecessary pages.

Print Pages ~ Allows the operator to print pages.

Manage Document Structure ™ Allows the operator to change the tree structure at or below the
task level using merging and splitting functionality.

Document Types 1 Options Allows the operator to change the document type during
validation.

Flagging

Field Flags 3 Options Field-level flags that cperators can apply.

Page Flags 8 Options Page-level flags that operators can apply.

Document Flags 3 Options Document-level flags that operators can apply.

Advanced

Output IA Value Destination Customvalues j Outputs !m_:lex values into flattened, dynamic values in addition
to the original structure.

Qutput Dynamic Values ™2 Fields that do not hawve matching IA values in the output
destination will instead have dynamic values created.

Qutput Array Fields Value Per Row j Array_ﬁelds can be written to individual 14 values per row, or to
one single string with each row separated by a newline.

Collect Document Type Statistics r Records statistics about the processed documents for use in
generating reports.

Collect Field Statistics | Records statistics about the processed fields for use in
generating reports.

Custom Value Custom text that is passed to document scripts.

o] 4 || Cancel || Help |
Figure 8 Desktop Configuration

4.3.4 NuanceOCR

The NuanceOCR module is configured as depicted in Figure 9. Note that a new output format was
created, Format1, and was assigned Adobe PDF with image on text inthe Format
dropdown.

This format definition will produce a text searchable PDF file and store it in the
OutputFilel OutputFile IAvalue that will be used by the web service to import the content to
the case management system (see Section 4.3.6.3).

£ ' HuanceOCR for InputAccel Setup - IncomingCaseDocument o] 4|

EMC Output Formats Settings

where information lives

_ Output Formatz
Information
Maximum formats allowed =2

E"gi"e New Format |
Document Recognition Del E,[B Format

Zone Definition

Format

Adobe PDF with i teat i
Output Formats [Adobe POF with image on =

Level
Scripting M -| e |
Error ¥ Saveto server

[T Savetofile system

Path

|C:"-.Pn:-glam Files\Input AccelClient \binnt Erowse | Insertvalue

File

Inode@n pudf Insert Value

If the file exists, then

I Prompt for an action j

ok | cacel | ey | Hep
Figure 9 NuanceOCR Configuration

4.3.5 LogResults (Standard Export)
The Standard Export module was configured to use the LogCaseDocExportToCMS Standard Export
profile we created in Section 4.2.3.

4.3.6 WebService Output

Configuring the three WSO modules discussed in this section is really where you see the web services
described in Section 3 come together with the CaptureFlow and IA values described in Section 4.1. It is
also the place where you see how some of the design decisions made in those sections come into play.

Common to all three configurations will be the WSDL URL. Copy and paste the value obtained from the
Catalina log file (as discussed in Section 3.4) into the WSDL URL field of the WSO setup screen and click
the Parse button. The result should be IncomingCaseDocsService in the Service name field (the

service name was defined in the code in Listing 2 Section 3.2.2), and one of the method names from
Table 1 Section 3.1 in the Method Name field (see Figure 10).

¥4 InputAccel Web Services Output Setup - IncomingCaseDocument - | I:Ilil

EMC Mapping

where information lives

WSDL URL

Information
Il'rt'tp:Mocalhnst:EDE»ﬂ,filncomingCaseDocsilncomingl:aseDocsSenriu:e'Msdl Parse |
WS Output Service name
I IncomingCaseDocsService j
Scriptin
pling Method Mame
- = =

[T Use MTOM to send files

IEH]'D 3: Reguest timeout in seconds

oK Cancel Apply Help

Figure 10 WSO Setup Screen

For each WSO module in the CaptureFlow, choose the appropriate method name to configure, and click
the Mapping button. Table 6 contains the mapping between the process steps and the web methods.

Table 6 WSO Process Step Names Mapped To Web Method Names

WSO Process Step Name Web Method Name

GetCaselnfo getCaseInfo()
ValidateCaselnfo validateCaseId()
ImportToCMS importFileToCMS ()

4.3.6.1 GetCaselnfo
Figure 11 depicts the mapping between the Custom and IA values and the web method parameters in

the GetCaselnfo setup screen.

& InputAccel Web Services Output Setup - Mapping for method getCaselnfo

IAValues

Method's pammeters

=100

Name | Type A|

Link zone

Name

| Type

Ow D int
B Ei% NodeValues_1
&% ScanPlus_1
&% ReadBarCode_1
&% GetCaselnfo_1
0% Desktop_1
[O&% validateCaselnfo_1
&% ImageConverter_1
O&® ImportTeCMS_1
&% LogResults_1
&% 14BatchCreationMerge_1
O Gateway_1
&% GatewayEndBlock_1
% CustomValues_1
v Caselame string
v CaselNumber string
v Defendant string
O « FileName string
O« FilePath string
O % ImportedFileld string
O v isCaseldValid string
O v isExportOk string
[v Password string
W Flantiff string
O v Ready int
v ServerMsg string
O+ Usemame string
% ENDDone_1
O<% ENDDelete_1
= O= Node_d
Owv o int
B O HodeValues_0
O ScanPlus_0
&% ReadBarCode_0
O GetCaselnfo_0
0% Desktop_0
O validateCaselnfo_0
&% ImageConverter 0
4% ImportTeCMS_0 I _Ij
3

IHEHEHEHEEEHMK

1Y

3

3

\

2 Ee=in

2 Ei= out

o]

B i getCaseinfo
v caseld

B [Ei® getCaseinfoResponse
B [caselnfo
v caseDefendant
O v caseld
W caselame
v casePlaintiff
W message

Cancel

string

string
string
string
string
string

Help

Figure 11

Table 7 contains a summary of the mappings depicted in Figure 11 .

Table 7 getCaselnfo Parameter Mapping
IA Values |
CustomValues 1.CaseName

caseName

getCaselnfo Parameter Mapping

Method Parameters
Out.getCaseInfoResponse.caselnfo.

CustomValues 1.CaseNumber

In.getCaseInfo.caseld

CustomValues 1.Defendant

Out.getCaseInfoResponse.caselnfo.

caseDefendant

CustomValues 1.Plaintiff

Out.getCaseInfoResponse.caselnfo.

casePlaintiff

CustomValues 1.ServerMsg

OV N Y N 2

Out.getCaseInfoResponse.caselnfo.

message

Notice how the web method’s parameters displayed in Figure 11 match the @annotations madein

the web services code in Listing 1 Section 3.2.1. The @WebMethod (operationName=

"getCaseInfo") caused the operation name to be “getCaseInfo”.

@WebResult (name="caseInfo") caused the name of the resulting complex type to be

“caseInfo”. Without these @annotations inthe web services code, the method’s parameters in
WSO would display as arg0, argl, etc. Interestingly, the names of the actual web service output
variables are the names of the private class variables of the WSOCaseInfoResult object (see Listing
6, Section 3.2.3.1). This phenomenon is a result of the JAX-WS serialization of the web services objects.
Because of this, it is critical that you use properly cased variable names in your class files and create
properly cased getters/setters also.

4.3.6.2 ValidateCaselnfo
Figure 12 depicts the mapping between the Custom and IA values and the web method parameters in
the ValidateCaselnfo setup screen.

¥, InputAccel Web Services Output Setup - Mapping for method validateCaseld =10] x|

IAValues Methed's parmeters

Name | Type A| Link zone MName | Type
O0% ScanPlus_1 B BEin
5% ReadBarCode_1 B E% validateCaseld
Dﬁ GetCaselnfo_1 - w caseld string
0% Desktop_1 o B B out
5% validateCaselnfo_1 B [E% validsteCaseldResponse
&% ImageConverter_1 = B isvalid
% ImportToCMS_1 - W message string
&% LogResults_1 w validld boolean
[05% 1ABatchCreationMerge_1
O&% Gateway_1
&% GatewayEndBlock_1
= &% CustomValues_1
O Caselame string -
W CaseNumber string "
[+ Defendant string
O+ FileName string
O+ FilePath string
O % ImportedFileld string .
w isCaseldValid string -
O« isExportOk string
O v Password string
O+ Plantiff string
O+ Ready int
W ServerMsg string -
O« Usemame string
5% ENDDone_1
5% ENDDelete_1
2 OE Mode 0
Owv o int
B O&% HodeValues_0
0% ScanPlus_0
5% ReadBarCode D
5% GetCaselnfo_0
0% Deskiop_0
RV

—_ Ivlj

Ok I Cancel Help

Figure 12 validateCaselnfo Parameter Mapping
Table 8 contains a summary of the mappings depicted in Figure 12 .

Table 8 validateCaselnfo Parameter Mapping
IA Values ‘ ‘ Method Parameters
CustomValues 1.CaseNumber -> In.validateCaseInfo.caseld

CustomValues 1. < Out.validateCaseIdResponse.isValid.
isCaselIdvalid validId

CustomValues 1.ServerMsg < Out.validateCaseIdResponse.isValid.
message

4.3.6.3 ImportToCMS
Figure 13 depicts the mapping between the Custom and IA values and the web method parameters in
the importToCMS setup screen.

¥, InputAccel Web Services Output Setup - Mapping for methed importToCMS =101x|
1AValues Method's pammeters

Name [Tyee =] Link zone Neme [Tyee
 OutputFilel_OutputFile file 2 E&=n
O % OutputFile2_Created long B EiS importToCMS
O & OutputFile2_ErrorNumber long v caseld string
O & OutputFile2_ErrorText string v filedats base64Binary
O % OutputFile2_Ext string [% filename string
O & OutputFileZ_FullPath string % password string
O & OutputFile2_OutputFile file ¥ usemame string
O % PreprocessingTime long B Ei out
O % ReadTime long Bl [E5% imporiToCMSResponse
O v Ready int = E4% importResult
O & RecognitienTime long © importedFileld string
O % RejectedCharacterCount long W importSuccess boolean
O v RetriesLeft int ¥ message string
O % StzrtDate string
O v StarDateTime date
O v StartDateTimeUTC string
O % StartTime string
O v SubTreeModified int
O & TaskResult long
O~ TotalTime long
O & TotalTimeSpan long
O v TreehlodeModified int
O & Trigger1_NuanceOCR boolean
0O & WordCount long

&% ImportToCMS_1

&% LogResulis_1

[O0&% 12BatchCreationMerge_1

&% Gateway_1

[05% GateviayEndBlock_1

= B3 CustomValues_1 p
O & CaseName string /
W CaseNumber string b
O & Defendant string ;
W Filelame string -
O % FilePath string .
& ImportedFileld string -
O v isCaseldvalid string ;
W isExportOk string -
& Password string b -
O v Plantiff string p
O % Ready int i
W Serverhsg string -/
v Usemname string b -

n # 4% ENDDene 1 =]
OK | Cancel Help
Figure 13 importToCMS Parameter Mapping

Table 9 contains a summary of the mappings depicted in Figure 13 .

Table 9 importToCMS Parameter Mapping

IA Values | | Method Parameters
NuanceOCR 1.OutputFilel In.importToCMS.filedata
OutputFile
CustomValues 1. In.importToCMS.caseId
CaseNumber

CustomValues 1.FileName

In.importToCMS.filename

CustomValues 1.
ImportedFilelId

Out.importToCMSResponse.importResult.

importFileId

CustomValues 1.isExportOk

Out.importToCMSResponse.importResult.

importSuccess

CustomValues 1.Password

In.importToCMS.password

CustomValues 1.ServerMsg

Out.importToCMSResponse.importResult.

Message

CustomValues 1.Username

N2 B N 2 B N N N7 N 2 BN

In.importToCMS.username

Two parameters stand out here. The firstis the NuanceOCR_1.OutputFilel OutputFile
mapped to In.importToCMS.filedata, and the second is CustomValues 1.Password
mapped to In.importToCMS.password. Inthe case of the NuanceOCR 1.OutputFilel
OutputFile, thisis the in-memory copy of the PDF created by the OCR process step that is mapped as
input to the importToCMS web method. Specifically, | mapped it to the web method’s byte [] input
parameter, filedata. A little bit of MTOM magic happens here, and the binary content of the PDF
file is transferred to the web service and ingested by the case management system (simulated).

Notice that during the configuration of this WSO module, | did not select the Use MTOM to send files
checkbox. Intuitively, you would think checking this box would be necessary for sending file using
MTOM; however, with the box checked, the module throws a runtime error citing an incorrect MIME
type was used in the SOAP header.

The second parameter is the CustomValues 1.Password variable. As discussed previously in
Section 4.2.2, capturing and passing around a password in this manner is not practical. This example is
merely supposed to show you that you can send login credentials to web services and have the services
to the authentication if necessary.

4.4 Deployment

Deploy the CaptureFlow and all of the profiles to the InputAccel server using the Captiva Designer.

5 Testing and Results

Now that the web services and the Captiva projects have been deployed, we will test them. This section
briefly describes the different testing methods | used to verify the functionality of the solution at
different levels.

5.1 Test Harness

The web services Eclipse project contains a test class, com.dm misc.captiva.wso.test.
WSOTest, that can be used to test the web service methods and result classes. This test harness does
not instantiate the classes as web services to test them. Instead, it just instantiates them as POJOs and
exercises their various methods and logic.

5.2 Storm

Once the web services were deployed to TomEE+, | used Storm (see References) to test each web
method. Figure 14 depicts Storm testing the getCaseInfo () web method. As you can see, the input
and output parameters are properly labeled (thanks to all those @annotations), and with the proper
input, the expected output is returned.

@ Storm : powered by F#1 ;Iglll

File View Configuration F#

o @ H 6 @
Add Remove | Save Open | Config | About

o 371972014 4:48:46 PM. ... Quick Test
B-dan ‘."'i'eb Services
By y hittp:/Aocalhost:8080//In

4l

E- @ getCaselnfo Status Code: 200
i@ Header Content Length : 428

o : Content Type: text/xml;charset=UTF-&
importToCMS =8 Body Server: Apache-Coyote/1, 1
- ¢ getCaselnfo - caseld = 12345678 Status Description: OK

+ validateCaseld

== Body
B~ o wsoCaselnfoResult result
i@ caseDefendant = Molly Peters
caseld = 12345678

]| 1L E)) [
M
-\
®
9
E
>

)| B

caseMame = Allegiance Insuran
LI_I LI casePlaintiff = Allegiance Insurg
. — message = SUCcess
Request | Misc |
E Misc =l i —_—
idIGNA”tOH True ——— Found method : validateCaseld from type IncomingCaseDocsService ;l
ContentTyp textfaml: che—) | |Fapsed Time - 1.8039649(sec)
Keepllive True Invoking...
Method POST Done. 1
P - Elapsed Time : 0.2080371(sec)
i =l
© erik.aracjo @hotmail. com Done. .:
Figure 14 Storm Web Services Test Client

5.3 Standard Out

All of the web service result classes (see Section 3.2.3) contain simple System.out.println()
statements that output messages to the TomEE+ console window. For brevity, these statements were
omitted from the code listings in Section 3.2.3. Figure 15 depicts the output messages displayed on the
TomEE+ console. These messages help trace the processing of the web service.

ol x|
WE0CaseInfoResult

HS0CaselnfoResult: case id: 12345678

ME0CaselnfoResult: case name: Allegiance Insurance Co. vz. Molly Peters
WS0CaselnfoResult: plaintiff: Allegiance Insurance GCo.
WE0CaseInfoResult: defendant: Molly Feters

HWE0CaseInfoResult: message: Success

com.dm_mizc . _captiva.wso.IncomingCazeDocs:validateCazeld
Wi0UalidateIdResult==

HEQUalidateldResult: case id valid: false

HiOUalidateIdResult: message: Case Id is not numeric: 12345%678a
com.dm_mizc._captiva.wso.l CazeDocsvalidateCGaseld
Wi0UalidateIdResult== =

HEQUalidateldResult: case id valid: true

HEOUalidateIdResult: message: valid
com.dn_misc.captiva.wso.IncomingGazeDocs: importToCHS
com.dm_misc.captiva.wso.InconingCaseDocs:validateCaseld
HE0UalidateldResult=====

WEiOUalidateldHesult: case id valid: true

Wi0UalidateIdHesult: message: valid

HWE0ImportResult= ==

HE0ImportResult: import successful: true

HE0ImportHesult: imported file Id: 1395262459777

WE0ImportResult: message: Buccessfully imported xyz.pdf to case 12345678 as 1395
262459779

Figure 15 TomEE+ Console Output

5.4 IA Administrator

Finally, the IA Administrator is an invaluable tool for debugging and monitoring your Captiva
CaptureFlows. | am not going to cover all of the aspects of using the IA Administrator, but want to point
out one helpful feature. Open a batch’s settings (double-click the batch in the IA Administrator’s Batch
Traffic window), change the view to Values, and the Filter to CustomValues (see Figure 16). Choose a
document node from the node tree on the left and examine the values in the right-hand pane. Here you
see all of the Custom Values used by our CaptureFlow, including all of the values sent to and received
from the web service. Of special note is the ServerMsg value which contains the informational
message from the web method.

lalx]
Batch Settings Print =)

Batch - IncomingCaseFile_scott_20140321-094027
View [|Values =

Values

ET TTEE VaeS <
El Node 1 - IncomingCaseFile_scot Filter: Icummvalues j
ElNode 2 - Level 6 (1) Value Name Value Type Setting Input]
El Node 3 - Level 5 (1) CaseMame String Rate Hikes by allegiance Insurance Co. =
El Node 4 - Level 4 (1) CaseNumber String 87143 [|
El Node 5 - Stack 1 Defendant String Allegiance Insurance Co. =
El Node 6 - Folder 1 FileName String CaseDoc-87143_83801_1.pdf |
El Node 7 - Docur FilePath String =
Node 8 - p. !rr::port:adclrFillfadld z:n:ng 1395409?866?3]]:
isCaseldvali rin rue
Bl Node 16 - Docy isExportOk Strin: true =
Node 9 - p. Password String captiva =
Node 10 - p. Plantiff String Molly Peters, [LF]John Spivy, and [LF]the... [T
Node 11 - p. Ready Integer 0 =
El Node 17 - Doct ServerMsg String Successfully imported CaseDoc-87143_83... [T
Node 12 - p. Username String captiva =
Node 13 - p.
El Node 18 - Doct
Node 14 - p.
El Node 19 - Doct
Node 15 - p._|
El Default Node Level Values
Level 0
Level 1
« | evel 7 | _'ILI (| R
OK
E
Figure 16 IA Administrator Values View

5.5 Complete Run Through

This last section depicts a complete run through of the CaptureFlow. For simplicity, | am importing files
into the CaptureFlow instead of scanning them. Specifically, | am using the sample images distributed
with Captiva, located on the IA serverat: C:\Users\captiva\Documents\Captiva
7.0\samples\Images\production auto learning. Figure 17 depicts the ScanPlus screen

after importing eight sample images as five documents. Clicking the Finish button starts the

CaptureFlow process.

% InputAccel ScanPlus - IncomingCaseFile_scott_20140321-094027

=101 %]

2 -
EMC IncomingCaseFile_scott 201403... [~ -
where information lives |Fo|der 1
‘; Scan Document 1 I"_\
S
o Settings ALLEGIANCE INSURANCE P A
.1 Insurancs Mads Simple
=] Summaly = 18158 A fverin
Document 2 [~ =tmoulh, Wi OZZEC
- | OO A
- [T EER L
z Help
i b2 b3
Document 3 (~) S
Scan Pages | o= e .;;*;,m
—_— T Rt
Finish Batch |
p.1 p.2
Diefer Batch e ~ =oCiTE CramaETIT SH PPED - & SoE ROIT “ER43
Preview PEQGS \mle‘t Files Nt P FOCr ria o Fayuh cwbh e 30 daym
Print Pages Export Pages n ERER o e
1 urin St vl e 1 1
o1 ; o — we e
1= . _ 1 Tane Cockes arcly 156z 800
]I'Ifllrmatilll'l # Document 5 f‘/\.‘_ TR Sirne Ehin 120
Ba... [ncomingCaseFile_scott 20 =
Proces... |IncomingCaseDocument
. o p.1 T &0
Batch open time: 9:40 AM pu L uzH
Mumber of pages: 2 TH TINE AN RODL BT
vt
Number of scanned pages: 0 TOTAL ozre
Number of discarded pages: 0 LI : = LI
View Settings | Scan settings | Batch summary S Fit to Width TR == E
IMPORTER | captiva | Connected (1) .:
Figure 17 ScanPlus

After a moment, the sample images should show up in the Captiva Desktop queue for processing, having

had their barcodes read and their case info retrieved via the WSO module. Figure 18 depicts the Captiva

Desktop screen. Note the field values in the right-hand pane of the window. In this example, |

deliberately append an asterisks (*) to the Case Number in order to force an error. The result is the

screen you see. Note the Error Msg that was returned from the web service.

After correcting the Case Number and entering the Password again, the document is processed

successfully.

;—ﬁ EMC Captiva Desktop - IncomingCaseFile_scott 20140321-094027* -10] x|

EMC Captiva Desktop $ W ® G

< » | Document Page Table Edit View Find text in labels and fields VAI

P
1. CaseDocument (1) Page - 1

Case Number

|87143=
Case Name

- |RatelHikes by Allegiance Ins
e (TS Plantiff

. RCHEEY
Molly Peters,
John Spivy, and
B sunte 28 s the Arizona Insurance
sty S v e airia s Board.

) Dhvge. A 01231 Vs A7 88931 g s, e St
TR =

ALLEGIANCE INSURANCE +
Insurance Mads Simpis

Defendant
Allegiance Insurance Co.

P e X dar

Baaoc

CMS Password
| captiva

Error Msg

Case Id is not numeric:
87143*

'51? fvre f;{:.’«’i’&f;

Atz iy Ao Enbesri

Al [

Working On: IncomingCaseFile_scott_2! (1 Documents) = CaseDocument (CaseDocument) work Level: Document [N user: captiva 4

Figure 18 Captiva Desktop

There are two primary results of a successful run of the CaptureFlow: PDF files are saved in the

c: \temp directory, and a log file is created. Figure 19 depicts the c: \ temp directory after a
successful run. Note the following: The files are all PDF, thanks to the OCR step; the file names all
follow the correct naming convention; and a log file exists. The existence of the PDF files in this
directory is proof that the web service is working: the PDF file was passed from the NuanceOCR step to
the importToCMS () web method, and saved here to simulate interaction with a case management
system.

=101 %]

— .
@ (‘_/w | . = Computer = Local Disk (C:) = Temp - m ISE._=,|-.;|-, @
File Edit Wiew Tool= Help
Organize ~ 15 Views ~ (7]
Favorite Links Mame = | v| Date modified | v| Type | v|
E CaseDoc-86199_83801_2.pdf 3/21/20149:;50 AM Adobe Acrobat ...
E' Documents ECESEDDE-BE‘H 1.83301_5.pdf 3/21/20149:43 AM Adobe Acrobat ...
E Pictures '@ CaseDoc-86439_83801_3.pdf 3/21/2014 9:47 AM Adobe Acrobat ...
R} Music @CESEDDE—BG*BQ_BSSD 1 4.pdf 3/21/20149:43 &AM Adobe Acrobat ...
Mare 3 '@CESEDDC—B?HS_BSBD 1_1.pdf 3/21/20149:459 AM Adobe Acrobat ...
|E'| casedoc_83301.log 3212014 9:50 AM LOG File
Folders w '@]gmdt&stpdf 3/14/2014 1:40 PM Adobe Acrobat ...
) ProgramData ;I
J System Volume Information 1
, Temp

x| 4 |

|P Computer

2|
4

|? items (Disk free space: 46.1 GE)

Figure 19 Case Docs in Temp Folder

Figure 20 depicts the log file generated by the Standard Export profile created in Section 4.2.3. This file
is used by the scan operators to verify and track the successful import of scanned files into the case
management system.

,'Icasedoc_s?as[)l.lu-g - Notepad

File Edit Format View Help

pate of Scan|Batch ID|Scan Operator|Case Number |Pages|CMS Doc Name|CMS Doc ID
3/21/2014 | 83801 |captiva|87143|1|CaseDoc-87143_83801_1. pdf|13954097 86673
3/21/2014 | 83801 |captival|86199|3|CaseDoc-86199_83801_2. pdf 1395409802041
3/21/2014 | 83801 |captiva|86439|2|CaseDoc-86439_83B01_3. pdf 1395409664144
3/21/2014 | 83801 |captiva|86439|1|CaseDoc-86439_83801_4. pdf|1395409715369
3/21/2014 | 83801 |captival|86411|1|CaseDoc-86411_83801_5.pdf 1395409727161

=101 x|
B

Figure 20 Case Doc Log File

6 Conclusion

The purpose of this tutorial was to provide a practical, hands-on example of using Captiva’s Web
Services Output module. The tutorial was presented in two primary parts: creating web services that
can be consumed by WSO, and creating a CaptureFlow that consumes the web services.

| hope this tutorial has demonstrated how interfacing Captiva to external systems via web services
expands Captiva’s capabilities considerably. Though the constraint of only consuming anonymous, SOAP
web services, is limiting in some environments, there are techniques for securing — or at least improving

the security of —these web services. The ability to return complex types to WSO from web services
further expands WSQ'’s usefulness and ease of integration. When web services return complex results
to the CaptureFlow (e.g., collections or multiple type results), they can be assigned to Custom Values or
IA values to augment or affect the capture process.

There are other, and perhaps more effective ways to achieve the same results demonstrated in this
tutorial. However, | don’t believe that there are any simpler ways. One of the goals of this tutorial was
to implement a solution that used no Captiva client-side scripting to implement a WSO solution. This
tutorial has achieved that goal by using only Custom and IA value assignments, CaptureFlow logic, and
module configuration.

Here are some key points from this tutorial:

e Anonymous web services — The Captiva WSO module can only consume anonymous, SOAP-
based web services. These two limitations constrain how your web services can be
implemented. The tutorial makes suggestions for alleviating some of these constraints (e.g.,
using IP filtering) as does the EMC Captiva Capture Web Services Guide (e.g., using SSL). The
tutorial provides examples of creating and implementing anonymous web services.

e Returning complex types - If you have any control over the format of the web service return
values, | suggest that you always return POD objects as complex types. This affords you the
option of returning multiple and various data types from a single web method. As
demonstrated in the tutorial, it is often necessary to return collections of items (e.g., arrays of
Strings), or Strings and a Boolean, etc. Another good practice is to return informational
messages from the web methods to WSO for inclusion in the Custom Values and/or display to
the scan operator. This will assist in troubleshooting problems in the future.

e level of triggering web services — Ensure the trigger level of the WSO is appropriate for both the
service and the data passed to it. For example, in the tutorial the ImportToCMS step triggered
for each document in the batch. If the batch contained 50 documents, it would trigger 50 times.
Depending upon your situation, this could cause a performance bottleneck. It wouldn’t be too
difficult to change the ImportToCMS trigger level to Batch, and update the web service to
receive the entire batch’s documents all at once, thus reducing the number of web service calls
by 49.

e Assignment of values — Be very careful of your assignment of values to Custom and IA values
both in the CaptureFlow and in the WSO mapping tool. Even though the tools will allow you to
make virtually any assignment you want, not all assignments will work as expected due to value
access across levels of the Captiva node tree.

e WSDL changes - Any time you make a change to the web service code that results in a change to
the WSDL file, you will need to reconfigure ALL WSO modules in the CaptureFlow.

e Using MTOM to transfer files — | mentioned it in the tutorial, but it bears repeating: if you use
MTOM to transport binary content to a web service, DO NOT check the Use MTOM to send files
checkbox on the WSO setup screen, it causes an error in the web service.

| hope you have enjoyed this tutorial and have found it helpful. If you are interested, the Eclipse project
and the Captiva Designer project can be downloaded here:

e Both projects (2.6 MB) — https://app.box.com/s/hrsog9afxg947kxd667i
e Eclipse project (1.9 MB) — https://app.box.com/s/0khzu76fniokkmop9gdf
e Captiva Designer project (724 KB) — https://app.box.com/s/1nj8h5v8podgcxw28vot

7 References
Following are links to web sites and documentation | found useful while developing this tutorial.

e EMC Captiva Capture Web Services Guide - Web Services Guide > Setup > Securing Web Services
Communications

e TomEE+ pre-configured application servers - http://tomee.apache.org/

e Eclipse IDE — http://www.eclipse.org

e Simple web services tutorial using Eclipse and TomEE - http://blog.sortedset.com/step-by-step-

web-services-with-tomcat-tomee-apache-cxf-eclipse/

e Web service tutorial - http://www.yourepeat.com/watch/?v=mGIPXKJo 6U

e http://java.dzone.com/articles/creating-and-deploying-jax-ws

e http://www.myeclipseide.com/documentation/quickstarts/webservices jaxws/

e http://tomee.apache.org/examples-trunk/simple-webservice/README.html

e MTOM - http://cxf.apache.org/docs/mtom.html,

e http://www.mkyong.com/webservices/jax-ws/jax-ws-attachment-with-mtom/

e JAX-WS annotations
http://pic.dhe.ibm.com/infocenter/wasinfo/v6rl/index.jsp?topic=%2Fcom.ibm.websphere.wsfe
p.multiplatform.doc%2Finfo%2Fae%2Fae%2Frwbs jaxwsannotations.html

e Web Services FAQ: http://www.coderanch.com/how-to/java/WebServicesFaq

8 Acknowledgements
| extend special thanks and recognition to Eric Chen, Brian Yasaki, and Rachael Roth for their assistance
with this tutorial.

<SDG><

https://app.box.com/s/hrsog9afxg947kxd667i
https://app.box.com/s/0khzu76fniokkmop9gdf
https://app.box.com/s/1nj8h5v8po4gcxw28vot
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput.htm
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput_designing.htm
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput_security_settings.htm
mk:@MSITStore:C:/TEMP/Captiva/IA/Docs/en-us/Help/ia_en-us_wsinputoutput.chm::/wsinputoutput_security_settings.htm
http://tomee.apache.org/
http://www.eclipse.org/
http://blog.sortedset.com/step-by-step-web-services-with-tomcat-tomee-apache-cxf-eclipse/
http://blog.sortedset.com/step-by-step-web-services-with-tomcat-tomee-apache-cxf-eclipse/
http://www.yourepeat.com/watch/?v=mGlPXKJo_6U
http://java.dzone.com/articles/creating-and-deploying-jax-ws
http://www.myeclipseide.com/documentation/quickstarts/webservices_jaxws/
http://tomee.apache.org/examples-trunk/simple-webservice/README.html
http://cxf.apache.org/docs/mtom.html
http://www.mkyong.com/webservices/jax-ws/jax-ws-attachment-with-mtom/
http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.wsfep.multiplatform.doc%2Finfo%2Fae%2Fae%2Frwbs_jaxwsannotations.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.wsfep.multiplatform.doc%2Finfo%2Fae%2Fae%2Frwbs_jaxwsannotations.html
http://www.coderanch.com/how-to/java/WebServicesFaq

