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Abstract 

This paper advances the concepts for detecting similarity among documents developed in The Similarity 
Index

 

 (July 2011), and demonstrates a much faster and more accurate approach.  The end goal of the 
paper is to demonstrate that it is possible to capture the salient features of documents in hash values 
such that these values can be compared to indicate similarity.  This index of similarity can be 
implemented in a content management system to enhance the searching and mining of content. 
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1 Introduction 
In July 2011, I published a paper titled The Similarity Index on my blog (msroth.wordpress.com) that 
detailed my search for a process that could reduce the essence of a document to a number (the 
Similarity Index, or SI) so that it could be compared to other such numbers to determine similarity 
among documents.  I was interested in finding a process that produced a number that could be queried 
using a percent differential (e.g., 90%), to find “similar1

The goal of the SIv1.0 was to affix the SI value to an object in a content repository as metadata.  Then, 
whenever an object was selected, the repository could easily identify similar objects in the repository by 
querying for SI values that were within a range of the selected object’s SI.  The capability to identify 
similar content in this manner could augment a content management system’s ability to search, mine, 
suggest, classify, and de-duplicate content, among other things. 

” documents in a collection.  That paper 
chronicled my experimentation with numerous algorithms and procedures for producing such a number.  
I will refer to that paper, experiment, and results as SIv1.0. 

In SIv1.0, I determined that it was possible to use a sliding k-gram of size 40 and the Java 
String.hashCode() as a hash method to produce a set of numeric shingles for a document.  This set of 
shingles was reduced to a set of fingerprints, or a sketch, by choosing only those shingles that were 
evenly divisible by 25.  The fingerprints were then summed to produce the SI.  (This experiment relied 
heavily on the work of Andrei Broder, et al; see Selected Bibliography).  For a more thorough discussion 
of k-grams, fingerprints, and sketches, see the SIv1.0 paper.  Though SIv1.0 proved that the concept was 
viable, the methodology suffered from some limitations and flaws.  Addressing those flaws has led to 
this second experiment, SIv2.0. 

SIv1.0 had three flaws I hoped to correct in SIv2.0: 

1. Some of the shingles produced – and ultimately some the SI values – were negative numbers.  
This should not have been possible since there were no subtraction operations used in the 
process.  The presence of these negative values meant only one thing:  the data type used to 
hold the shingle hash values overflowed.  Negative numbers threw off the SI value (because the 
fingerprints were summed to compute the SI), thus masking the real results and inserting 
uncertainty in the process. 

For SIv2.0, I needed to find a hash that was guaranteed not to overflow, or would handle an 
overflow in such a way as to not artificially affect the SI. 

2. The data corpus used to test SIv1.0 was too small, consisting of only 15 documents.  Though 
SIv1.0 produced favorable results on this data set, I was concerned that it would not produce 
similar results on a larger data set.  In fact, I later tested this theory with a corpus of 10,000 

                                                           
1 Similar documents are those which share essentially the same words in the same sequence (syntactic similarity). 
These documents do not necessarily share similar meanings. For the purposes of this paper, the format of 
documents was inconsequential, the experiment operated only on the text of the documents. 

http://msroth.wordpress.com/2011/07/similarity-index.pdf�
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documents and was justified in my concern:  SIv1.0 did not perform well against this larger 
corpus. 

For SIv2.0, I assembled a corpus of 13,620 documents ranging in size from 1KB to 4.3 MB on a 
diverse set of topics.  This corpus should prove whether or not SIv2.0 was applicable to a large, 
diverse set of files. 

3. Because the compilation of the shingle value involved generating relatively large numbers for 
each k-gram and summing them together to calculate the SI, the SI values grew in proportion to 
the size of the document being processed.  Ultimately, these numbers overflowed the data type 
used to hold them (Java long). 

The shingle hash was roughly: 

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1] 
 

where s is the k-gram, and n is the length of the k-gram) 

For SIv2.0, I needed to find a way to consistently produce a 64-bit hash value regardless of the 
size of the document.  I settled on a 64-bit value because I wanted most computers and OSes to 
be able to handle the comparison of SI values as primitive numeric types. 

2 SI v2.0 Experiment 
The goals of the SIv2.0 experiment were to address the shortcomings of the SIv1.0 experiment, and 
make improvements in speed, accuracy, and scalability of the process.  Solving the data corpus size was 
simple enough; solving the hash algorithm and data type issues required a lot more research and 
experimentation. 

2.1 Data Corpus 
For this experiment, I assembled 13,620 files (343 MB) from various online sources (e.g., 
textfiles.com and Project Gutenberg).  These files ranged in size from 1KB to 4.3 MB and covered a 
wide variety to topics2

After downloading the files, I ran a Java program that implemented the following logic to introduce 
controlled similarity into the corpus: 

.  Though some of the files inherently contained a lot of similarity (e.g., hard drive 
specification files in the Computer collection), I randomly introduced variations into the data set to 
increase its size and control similarity. 

1. Copy each file in the corpus to the workspace for the experiment.  Each file had a 50% chance of 
selection for modification. 

                                                           
2 Appendix 1 contains a list of the file collections used for testing. 

http://www.textfiles.com/�
http://www.gutenberg.org/�
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2. If a file was selected for modification, it had a 50% chance of being selected for augmentation, 
and a 50% chance of being selected for reduction. 

3. If a file was selected for augmentation, a random string from the file – up to 80% of the size of 
the file – was selected for addition to the file.  This string was randomly inserted into the file. 

4. If a file was selected for reduction, a random string from the file – up to 80% of the size of the 
file – was selected for removal from the file.  The location of the deletion was randomly 
selected. 

5. The files were saved with new file names to indicate whether the file was augmented or 
reduced, and by what amount.  For example: 

• feder15.txt - the Federalist Papers (1.2 MB) 
• feder15_i_43.txt - the Federalist Papers with 43% additional text (2.1 MB)3

This naming convention assisted in quickly determining how similar files were based upon the 
modifications made to them. 

 

This technique effectively increased the data corpus to 20,476 files (523 MB). 

2.2 The Hashing Algorithm 
Developing a new hashing algorithm that did not overflow its data type and produced consistent 64-bit 
hashes regardless of the input size proved to be the most difficult part of this experiment.  I wanted an 
algorithm that hashed “similar” files into the same “bucket”.  As humans, we can do this fairly easily.  
We can sort objects based upon some attribute and put all of the objects that share similar properties 
into the same group, or bucket.  In computer algorithm parlance, this is called local clustering, and there 
are numerous examples of computer systems that implement this capability, for example:  de-
duplication engines, plagiarism detection systems, copyright violation systems, and recommendation 
engines.  These systems (in general), create sets of fingerprints for each object in their universe and 
systematically compare each fingerprint in the sets to detect similarity.  The difference between these 
implementations and what I was seeking was that I wanted to reduce the set of fingerprints to a single 
value that could easily be stored and compared to determine similarity, without the need for a database 
to store the fingerprints. 

I surmised a hashing algorithm that worked similar to the MD5 or SHA-1 algorithms that processed 
fixed-sized blocks and produced fixed-sized output fields would be best.  In these algorithms, the output 
fields are concatenated to produce the final hash.  There were several problems with using an approach 
like this.  First, I couldn’t use an algorithm that included an avalanche effect (this is the property of the 
algorithm that ensures the hash is sufficiently changed based upon changing input).  Instead, I wanted 
an algorithm that ignored minor changes in input, and consistently produced the same or similar hash 
values.  The second problem was that because these algorithms generally produced four 16-bit fields 

                                                           
3 Incidentally, despite the rather large amount of duplication inserted into this file, the experiment found these 
files to be similar. 
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that were concatenated to produce the final hash, I wasn’t able to compare them using a simple +/-% 
approach as I did in SIv1.0. 

After many attempts at creating my own algorithm and reading many research papers (see the Selected 
Bibliography if you are interested), I was led to the SimHash algorithm developed by Moses Charikar. 

2.2.1 SimHash 
The SimHash4

SimHash works by breaking the input string into k-grams and producing a fixed sized shingle for each k-
gram.  The size of the shingle is the same size as the final hash (e.g., 64-bits).  Each bit position of each 

shingle is reviewed

 algorithm was exactly what I was looking for; eloquently simple compared to other 
algorithms and techniques I reviewed, though not so simple that I could have devised it. 

5

Following is a pseudo-code representation of the process: 

.  If the bit at shingle[i] is set (i.e., 1), then the same bit position in a temporary 
vector (e.g., V[i]) is incremented by 1.  If the bit at shingle[i] is not set (i.e., 0), then V[i] is 
decremented by 1.  Once the entire input string has been evaluated, the SimHash is calculated by 

reviewing the temporary vector, V.  If the bit at V[i] is greater than 0, then the bit at simhash[i] is 
set to 1, else it is set to 0.  The result of this process is a 64-bit binary number. 

1. Produce a set of shingles (S) for the input. 
2. Initialize a temporary vector (V), 64-bits in size, containing all zeros. 
3. For each shingle (s) in set S, if s[i] is 1 (where i = bit position), then increment V[i].  If 

s[i] is 0, decrement V[i]. 
4. Initialize the SimHash vector (H), 64-bits in size, containing all zeros. 
5. After processing all of the shingles in S, evaluate the temporary vector, V:  if V[i] > 0, then 

H[i] = 1, else H[i] = 0. 
6. The resulting binary number represented by vector H is the SimHash value. 

 

 

                                                           
4 The SimHash algorithm was developed by Moses Charikar in 2002, and described in his paper; Similarity 
Estimation Techniques from Rounding Algorithms (see Selected Bibliography).  The algorithm is also patented in US 
Patent 7158961. 
5 The input is converted to a binary string for comparison. 
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Table 1 contains a simplified example of how the SimHash algorithm works.  To conserver space, I used a 16-bit V and H, and a 3-bit k-gram.  To 
produce the shingles, I simply summed the ASCII values of the characters in the k-grams.  This is not a viable hashing technique for real world 
usage, but served well for this example.  Each row in the table represents a successive loop in the algorithm (i.e., step 3 in the pseudo-code 
above).  The input string was “Hello world”. 

Table 1: Sample SimHash Demonstration 

k-gram shingle shingle (binary) V 
   0 1 2 3 4 5 6 7 8 9 a b c d e f 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hel   72 + 101 + 108 = 281 0000000100011001 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 
ell 101 + 108 + 108 = 317 0000000100111101 -2 -2 -2 -2 -2 -2 -2 2 -2 -2 0 2 2 0 -2 2 
lo_ 108 + 111 +   32 = 251 0000000011111011 -3 -3 -3 -3 -3 -3 -3 1 -1 -1 1 3 3 -1 -1 3 
o_w 111 +   32 + 119 = 262 0000000100000110 -4 -4 -4 -4 -4 -4 -4 2 -2 -2 0 2 2 0 0 2 
_wo   32 + 119 + 111 = 262 0000000100000110 -5 -5 -5 -5 -5 -5 -5 3 -3 -3 -1 1 1 1 1 1 
wor 119 + 111 + 114 = 344 0000000101011000 -6 -6 -6 -6 -6 -6 -6 4 -4 -2 -2 2 2 0 0 0 
orl 111 + 114 + 108 = 333 0000000101001101 -7 -7 -7 -7 -7 -7 -7 5 -5 -1 -3 1 3 1 -1 1 
rld 114 + 108 + 100 = 322 0000000101000010 -8 -8 -8 -8 -8 -8 -8 6 -6 0 -4 0 2 0 0 0 
   H 
   0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
 

The resulting SimHash value was: H = 0000000100001000 = 264 (decimal) 
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2.2.2 Evaluating SimHash Output 
Hashes produced by SimHash can be compared as integer numbers or as binary numbers to determine 
similarity.  Because the SimHash algorithm could place a 1 in the left-most bit of the binary hash number 
(forcing the decimal representation of that number to be negative), most authors preferred to compare 
the binary form of the hash using a Hamming Distance.  Simply comparing these numbers based upon 
their decimal values could misrepresent their similarity due to differing cardinality caused by that first 
bit.  This is similar to the negative numbers caused by overflow encountered with SIv1.0.  This problem 
does not exist using bit-wise Hamming Distances. 

For the purposes of this experiment, the Hamming Distance between two SimHash values was 
determined by simply identifying the number of bits that differed between the binary representations of 
the hashes.  For example: 

File 1 hash: 1010001111011011111100110100111101110110111010100000010100010000 

File 2 hash: 

Bit differences:          1          1 11   1                       1 

1010001110011011111110000101111101110110111010100001010100010000 

The Hamming Distance between File 1 and File 2 is 6.  The lower the Hamming Distance, the more 
similar the files are. 

2.3 The SI Index and Determining Similarity 
The SimHash value is the Similarity Index I was searching for.  Similarity between two files can be 
determined by comparing the Hamming Distance between their SI values (SimHashes), as demonstrated 
in Section 2.2.2. 

I still liked the notion developed in SIv1.0 that the SI should allow querying for files that are within +/- 
X% of a known SI value.  For example, it would be possible to find files that are 90% similar to a given 
file, or files that differed by only 10% from a given file.  Knowing the SI is 64-bits long, I can locate files 
that are 90% similar (or only differ by 10%) by finding Hamming Distances between their SI values that 
are equal to or less than 6. 

hamming_distance = hash_length – (similarity) * (hash_length) 
hamming_distance = 64 – (0.90) * (64) 
hamming_distance = 64 – 57.6 
hamming_distance = 6.4 

Therefore, files that are 90% similar, or differ by only 10%, will have a Hamming Distance between their 
SI values of 6 or less. 

2.4 Experiment Execution 
The experiment was run in three distinct parts:  loading the data corpus, calculating the SI (SimHash) 
value, and comparing SI values to determine similarity.  My experiment used code written completely in 
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Java and utilized classes from the Common Crawl-crawler project (see Selected Bibliography) for 
generating shingles, producing SimHash values, and calculating Hamming Distances. 

2.4.1 Loading the Data Corpus 
As explained in Section 2.1, an initial corpus of 13,620 files (343 MB) from various online sources was 
expanded to a corpus of 20,476 files (523 MB) by randomly introducing variations into selected files.  
Variations included both insertions and deletions of up to 80% the size of the original file.  The modified 
files were given filenames that identified the size and type of variation introduced to the original file. 

Statistics for the final data corpus were: 

• insert modifications :   4,619 
• delete modifications :   3,057 
• unchanged  : 12,800 
• total files  : 20,476 

2.4.2 Calculating the SI (SimHash) Value 
Step two of the experiment simply calculated the SI (SimHash) value for each file in the corpus.  The 
file’s name and SI value were stored in an internal memory array in preparation for the analysis step of 
the experiment.  This step took 160 sec (3.3 MB/sec). 

2.4.3 Analyzing SI Values 
To analyze the SI values produced in step two, the program calculated the Hamming Distance between 
every SI value in the memory array described in Section 2.4.2.  This required roughly 211 million 
comparisons.  Files with Hamming Distances of 6 or less (90% similarity) were flagged as similar.  This 
step produced results that were further analyzed using a spreadsheet.  This step took 106 sec (1.99 
million comparisons/sec). 

2.5 Results and Observations 
In the end, the experiment produced a result file 35,377 lines long.  Thanks to some spreadsheet 
features that allowed for searching and special formatting, matches of similar files were easy to identify 
and verify. 

Here are a few observations from the result set: 

• The experiment identified 14,900 files (73% of corpus) as having similarity to at least one other 
file in the corpus.  Of course, some of these files had more than one “match” as they proved 
similar to numerous files in the corpus, so this number overstates the result somewhat. 

• File st8134k.txt was identified with the highest number of similar matches:  15.  25 files in 

the result set had matches of 10 or more to other files in the corpus.  File st8134k.txt was a 
hard drive specification sheet and only differed to some of the files in the corpus by as little as a 
single character. 

• Looking at modified files versus their unmodified forms, the algorithm did not match files with 
deleted material as well as those with inserted material.  There were 2,613 files with Hamming 
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Distances of 76

• Again, looking at modified files versus their unmodified forms, of the 940 pairs with Hamming 
Distance of 0 (exact matches), only 27 (3%) were of the deletion variety. 

 or more when compared to their unmodified forms.  Of these 2,613 files, only 
141 included insertions (5%), all the rest were modified by deletion.  This observation makes 
sense when you think about it.  Absent shingles would definitely change the calculation of the 
SimHash value.  Inserted, duplicated material might change the hash slightly, but the algorithm 
smoothed these variations (as it should have). 

• Some files with as much as 80% insertion still compared as identical (Hamming Distance of 0).  
The greatest variance using the deletion modification that still produced a Hamming Distance of 
0 was 33%.  Intuitively this value seems high to me and causes me a little concern.  This could be 
the subject of more testing and research. 

• Several files were identified as similar that were, in fact, exact duplicates.  These files were 
named differently or were included in different collections in the corpus and were not obviously 
identifiable as the same file before the experiment.  For example, computes/handles.txt 

and politics/anonymit are the same file, as are law/court.law and 
news/neidorf.  Once identified as exact matches by the SI process, they were manually 
verified.  The modified forms of these files were also identified as similar by the SI process. 

• The computers/harddrives collection contained hardware specification files.  These files 
were essentially identical in content and format, except for the exact specifications they 
contained for a particular piece of hardware.  For example, the difference between the ST-71P 

Solid State FlashCard (st71p.txt) and the ST-71P5 Solid State FlashCard (st71p5.txt) was 
only a few characters.  The SI algorithm properly identified these spec sheets as similar to one 

another (in addition to the st72p5.txt, st720p5.txt, st75p5.txt, and 
st710p5.txt).  However, it was discerning enough to distinguish these from the ST-72A Solid 

State FlashCard (st72a.txt) file that contained additional content absent from the other spec 
sheets. 

3 Conclusion 
In conclusion, I am extremely satisfied with the SIv2.0 experiment.  The SimHash algorithm has proven 
to work exactly as I had envisioned the SI to work.  I feel justified in my original notion that 
characterizing the content of a file as a single numeric value that could be compared to other such 
values to determine similarity was possible.  Though I would have loved to have developed the 
algorithm myself, I am grateful to Mr. Charikar for his brilliance in developing SimHash for us.  (I’m sure 
Google is also very pleased with him since SimHash seems to be an integral part of how their search 
engine suggests related sites to visitors.) 

As I discussed previously, and as you can probably imagine, there are numerous applications for the SI:  
recommendation engines, research, content mining, plagiarism detection, content de-duplication, 

                                                           
6 Less than 90% match. 
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content classification, etc.  However, my intent was much simpler.  I wanted a way to identify similar 
content in a content management system that did not require the use of a full text search engine.  By 
assigning an SI value as metadata to each content object in a repository, a simple query could be 
constructed to find content similar to a selected content object.  For example, a pseudo-query might 
look something like this: 

select content_id from content_object where 
hamming_distance(SI_value,[SI]) <= 6 

In this case, the hamming_distance() is a database function, stored procedure, or function of the 
content repository that determines the Hamming Distance between all SI_values and the [SI] 
value passed to it. 

As demonstrated in the next section, I was able to implement a small prototype of this idea.  It is my 
hope that in the future, major content management system vendors might adapt this idea and 
incorporate the notion of a Similarity Index into their core product offerings.  In my mind, the benefits of 
the ability to quickly search for similar content in a repository – without the need for a full text indexing 
solution -- far outweigh the additional storage required to persist the SI value (a single 64-bit field), and 
the overhead to implement the SimHash algorithm and Hamming Distance logic. 

4 Sample Implementation 
Using a test environment consisting of Documentum 6.6 and SQL Server 2005, I was able to create a 
relatively simple implementation of SIv2. 

First, I created a custom document object type, sr_document, that contained a metadata field siv2 

of type STRING(64).  I then imported several hundred documents from my test corpus and saved 
their SIs to the siv2 metadata field. 

I created a hamming distance function, HamDist(), in SQL using code posted by Jeff Smith 
(http://weblogs.sqlteam.com/jeffs/archive/2007/05/09/60197.aspx) that accepted two 64-character 
strings as inputs, and returned their Hamming Distance as output.  This code can be found in Appendix 
2. 

I was then able to run a query like this from the Microsoft SQL Server Management Studio:  

select 
s.r_object_id, 
s.object_name, 
m.siv2, 
dbo.HamDist(m.siv2, 
'0011111101011101000101010000111101110110010010010101110010000011
') as HD 

from 
dm_sysobject_s s, 

http://weblogs.sqlteam.com/jeffs/archive/2007/05/09/60197.aspx�
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sr_document_s m 
where 

m.r_object_id = s.r_object_id 
and 
dbo.HamDist(m.siv2, 
'0011111101011101000101010000111101110110010010010101110010000011
') <= 6 

 
 
where the 64-character SI is known from the experiment output for file sttech.txt.  This 
query correctly identified the four other files in the repository that were similar to the specified 
file, according to the experiment results. 

r_object_id object_name siv2 HD 
090000018006e74c sttech.txt 0011111101011101000101010000111101110110010

010010101110010000011 
0 

090000018006e74d treknolo 0001101101000101000101010000111101111110010
010010101110010010011 

6 

090000018006e74e warpte_i_6.txt 0001111101011101000101010000111101110110010
010010101110010000011 

1 

090000018006e764 treknolo_i_25 0001101101000101000101010000111101111110010
010010101110010010011 

6 

090000018006e765 warpte.txt 0001111101011101000101010000111101110110010
010010101110010000011 

1 

Unfortunately, DQL (Documentum’s query language) does not allow user-defined database 
functions or stored procedures, so a similar query is not possible directly from Documentum.  It 

is possible run the query as an SQL Pass-through query using the exec_sql syntax like this: 

execute exec_sql with 
 query= 'select s.r_object_id, 
   s.object_name, 
   m.siv2, 
   dbo.HamDist(m.siv2, 
''0011111101011101000101010000111101110110010010010101110010000011'') 
as HD 
 from 
  dm_sysobject_s s, 
  sr_document_s m 
 where 
  m.r_object_id = s.r_object_id 
  and  
  dbo.HamDist(m.siv2, 
''0011111101011101000101010000111101110110010010010101110010000011'') 
<= 6' 
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However, exec_query only returns true or false as its result, not the result of the actual 
SQL query. 

There are numerous alternatives for implementing an SI solution in Documentum (e.g., a 
Service-Based Object (SBO) or web component that executes the query directly on the database 
using JDBC).  There will be challenges with each alternative, but they could be a fun endeavors 
and possibly subjects for future work. 
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6 Appendix 1 
Test data corpus. 

6.1 Textfiles.com 
• Computers  (1704 files / 37.4MB) 
• Humor   (2067 files / 26.9MB) 
• Internet  (852 files / 36.4MB) 
• Law   (534 files / 15.4MB) 
• Media   (167 files / 6.29MB) 
• Misc   (398 files / 14.2MB) 
• News   (185 files / 2.32MB) 
• Politics   (2200 files / 59.4MB) 
• Programming  (608 files / 22.1MB) 
• Science   (280 files / 4.94MB) 
• SF   (636 files / 23.6MB) 
• Stories   (477 files / 12.5MB) 
• UFO   (2935 files / 35.8MB) 
• Uploads  (559 files / 4.72MB) 

6.2 Project Gutenberg 
• 1mlkd11.txt   799KB 
• 2city10.txt   759KB 
• 1776-va_rts.mht  7KB 
• 2000010.txt   580KB 
• Alcott-little-261.txt  1041KB 
• Alice.txt   151KB 
• Barrie-peter-277.txt  260KB 
• Bronte-wuthering-304.txt 660KB 
• Bunyan-pilgrims-304.txt  298KB 
• Civildis.txt   52KB 
• Common_sense.txt  123KB 
• Dgray10.txt   442KB 
• Dracula.txt   839KB 
• Getty11.txt   10KB 
• Hamilton-federalist-548.txt 1166KB 
• Hdark11.txt   222KB 
• Kjv10.txt   4329KB 
• World94.txt   2802KB 
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7 Appendix 2 
Hamming Distance function in SQL from 
http://weblogs.sqlteam.com/jeffs/archive/2007/05/09/60197.aspx. 

create function HamDist(@value1 char(64), @value2 char(64)) 
 
returns int 
as 
begin 
declare @distance int 
declare @i int 
declare @len int 
 
select @distance = 0,  
@i =1,  
@len = case when len(@value1) > len(@value2)  
then len(@value1)  
else len(@value2) end 
 
if (@value1 is null) or (@value2 is null) 
return null 
 
while (@i <= @len) 
select @distance = @distance +  
case when substring(@value1,@i,1) != substring(@value2,@i,1)  
then 1  
else 0 end, 
@i = @i +1 
 
return @distance 
end 

Example: 

SQL> select dbo.HamDist('00100','11100') 

Result: 

SQL> 2 
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