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Abstract 

Is it possible to calculate a hash value for a document that captures its salient characteristics, 

such that a repository can be queried for like values and retrieve all “similar” documents?  If so, 

similar documents could be easily identified by a simple SQL query without the need for a full 

text search engine.  Such a value would allow systems to quickly identify duplicate or similar 

content before it is checked into a repository, introduced to an index, or returned in a query 

result.  Additionally, this value could assist with identifying other content a user might be 

interested in, though they did not explicitly query for it. 

This paper endeavors to answer this question by exploring the corpus of existing research in this 

and related areas, and reporting the results of experimentation.  This investigation was 

conducted with the intent of implementing such a solution in a Documentum environment. 
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1 Introduction 
Recently, an intriguing question was raised on the EDN.  The gist of the question was, during the checkin 

of a document, is there a quick and easy way to determine if a similar document already exists in the 

repository?[18]  If the question had been, is there a way to identify exact duplicate documents, the 

answer would be “yes”.  This could be accomplished using a cryptographic hash such as MD5 or SHA-1 

[5] [8].  However, because the questioner was interested in “similar” documents, cryptographic hashes 

were not the solution, since cryptographic hash functions are designed to detect the slightest 

perturbation of the content [16].  This notion of identifying similar documents sparked an idea in my 

mind. 

The ability to find similar documents exists in the Lucene MoreLikeThis API [7], but would require 

some customization to make it work in Webtop and xPlore.  The MoreLikeThis API essentially 

extracts salient words from the current document and uses them to construct a full text query against 

the Lucene indexes.  I was more interested in determining if it was possible to calculate a number that 

would represent the primary characteristics of a document.  If it was, I could query a repository for all 

documents within +/- 30%1 of a known value and call those documents “similar”.  The use of such a 

number would allow the detection of similar documents in repositories not using xPlore (or Lucene), and 

could easily be implemented with an Aspect.  This value would be the product of a different kind of 

hash, one where slight differences in content were ignored.  I call this value the similarity index, SI. 

2 Background 
I discovered that there is a vast field of academic research related to the idea of detecting near-

duplicate documents, for example:  [1] [3] [5] [6] [9] [10] [17] [18].  Closely related to this field of 

research is the notion of document clustering (putting similar documents in the same indexing bin) [14] 

and content analytics (generating statistics about documents to improve search and retrieval) [22].  It's 

pretty heady stuff but fun to read.  I included a select bibliography at the end of this paper if you are 

interested. 

Most of the cited research was conducted with Internet search engines in mind (e.g., AltaVista, Google) 

to reduce redundant results and keep near-duplicate documents out of the indexes.  In these scenarios, 

a collection of numeric fingerprints of a document (called a sketch) was stored in a database and 

similarity was determined by how many fingerprints two documents shared.  The more fingerprints two 

documents shared, the more similar they were deemed to be.  This idea and basic process has 

applicability beyond just Internet search engines.  These same concepts and processes have been 

employed to detect duplicated, copied, and refactored source code [10] [11], plagiarism in academic 

papers [13], copyright infringement [13], articles derived from the same source material [5], and even to 

suggest products consumers might be interested in based upon the contents of their electronic 

shopping carts [5]. 

                                                           
1
 This is a fairly arbitrary value, but one that seems to work well; some authors declared documents similar if they 

contained only 50% [9] common fingerprints, others 90% [6]. 
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My idea was to take this concept one step further and reduce the sketch to a single value, the Similarity 

Index (SI), thus eliminating the need for a database to store the sketch.  If the sketch could be reduced 

to a single value, this value could easily be stored as a property of a document or as a single-valued 

attribute in Documentum.  The idea of reducing the sketch to a single value was discussed and 

implemented in passing by [9] as a way to quickly determine the accuracy with which their methodology 

detected duplicate or near-duplicate documents. 

One thing to note is what I (and the other authors [1] [5] [9] [17]) mean by similar documents.  Similar 

documents are those which share essentially the same words in the same sequence (syntactic 

similarity).  These documents do not necessarily share similar meanings.  Detection of this sort would 

require the analysis of each word, its meaning, sentence constructs, etc.  For the purposes of this paper, 

the format of documents is inconsequential; the experiment operates on only canonical (i.e., text) forms 

of documents. 

The rest of this paper will discuss the experiment I conducted, the methods I used to produce the 

Similarity Index, the results of the experiment, and the utility of the computed value in identifying 

similar documents. 

3 The Experiment 
To conduct the experiment, I wrote a Java class that implemented the process depicted in Figure 1 and 

used several freely-available libraries to implement some of the hairier mathematics and encoding [19] 

[20].  The class implemented fourteen different methods for producing the SI value.  These methods are 

discussed in Section 3.3.  In addition to these different methods, I used three different input streams:  

characters, words and Soundex [15] tokens.  These input streams are discussed in Section 3.4 and 3.5.  

Finally, I assembled a collection of test documents that I expected to give a variety of results.  These 

documents are discussed in Section 3.2. 

3.1 Overview 
There are various techniques for analyzing content for similarity [5] [12] [17].  Most of these techniques 

begin by slicing and dicing content into k-grams to produce shingles, fingerprints, and sketches (see 

Figure 1).  A k-gram is an overlapping sequence of characters or words of k length.  Shingles are numeric 

representations of the k-grams produced by hashing the k-grams.  Some researches [9] simply used the 

Java String.hashCode() method to produce the hash for each k-gram, while others employed a Rabin 

hash [2].  Creating shingles produces roughly as many shingles as there are characters or words in the 

original content.  To be efficient, this set must be reduced by a filtering function to a set of fingerprints 

(i.e., hashed shingle values that represent the salient features of the content).  Various methods are 

proposed for conducting this set reduction including:  keeping only those shingles evenly divisible by 25 

[1], using a Winnowing function [3] [4], or keeping only the 400 highest valued shingles [3].  The filtered 

collection of fingerprints is called a sketch. 

For purposes of this explanation, assume the incoming document stream is the first sentence from 

Lincoln’s Gettysburg Address: 
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Four score and seven years ago our fathers brought forth on this continent, a new nation, 

conceived in Liberty, and dedicated to the proposition that all men are created equal. 

 
Figure 1  k-grams, Shingles, Fingerprints and Sketches 

3.1.1 k-grams of Letters and Words 

k-grams were constructed by reading either the incoming character or word streams and simply 

appending successive characters (words) to a String until it equaled k length.  The length, k, was 

controlled by a process parameter (see Section 3.6) and varied across runs of the experiment. 

In Figure 1 , the first nine character k-grams (k = 4) for the beginning of Lincoln’s Gettysburg Address are: 

{ (four), (ours), (ursc), (rsco), (scor), 

(core), (orea), (rean), (eand) } 

The first four word k-grams (k=4) look like this: 

{ (four score and seven), (score and seven years), 

(and seven years ago), (seven years ago our) } 
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This overlapping (i.e., shingle effect) provides some insulation against inserted and deleted characters 

(words) in the text.  Because the shingles are generated from a sliding window of k length, eventually 

any inserted or deleted letters will be overcome, and the shingles produced will resemble those of the 

original document.  A good filtering algorithm will pick up the same shingles from both an original and a 

near duplicate document, thus eliminating the difference the inserted or deleted characters (words) 

made. 

3.1.2 Hash Function 

The purpose of the hash function was to encode each shingle into a unique fingerprint.  I used Java’s 

String.hashCode() method to hash k-grams into fingerprints.  [9] submits that this hash is sufficiently 

collision-resistant for this purpose.  More details about Java’s String.hashCode() method can be found in 

[21]. 

3.1.3 Filter Function 

The filter function proved to be a key aspect of the process.  As mentioned previously, the filter function 

determined which fingerprints were included in the sketch and which were not.  The crux of the function 

was that it must be selective enough to retain the major characteristics of a document without creating 

a sketch that was so liberal there was no differentiation among documents.  Filtering techniques are 

discussed in more detail in Section 3.3. 

3.1.4 Aggregation Function  

The aggregation function endeavored to reduce the sketch produced by the filter function to a single 

number.  Like the filter function discussed in Section 3.1.3, the aggregation function needed to produce 

a value that represented the character of the sketch without being too generic or restrictive.  I took 

three approaches to aggregation.  The first was to simply sum the fingerprints in the sketch [9].  The 

second was to recursively produce k-grams from the fingerprints in the sketch until only one k-gram 

remained.  This has been referred to as a super shingle by [9] [14] [23].  The third approach was to 

produce a Rabin hash of the sketch. 

3.1.5 Similarity Index 

The Similarity Index was the final result of the experiment.  Its goal, as stated earlier, was to represent 

the salient features of a document as a single value.  With the SI, it was possible to determine if two 

documents were similar by comparing the difference between their SI values.  If the difference between 

the values was < 30%, the documents were deemed similar. 

3.2 The Document Collection 
Table 1  describes the document collection used in the experiment. 

Table 1   Document Collection 

File Name Chars Words Remarks 
AddToClipboardAction.j

ava 

3,632 213 The source code for a Java class file 

DeleteDocument.class 18,468 2,711 A compiled Java class file 
Gettysburg.txt 1,473 270 The text to Lincoln’s Gettysburg Address 
Proverbs.txt 91,384 19,157 The book of Proverbs from the Bible 
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File Name Chars Words Remarks 
Proverbs1-16.txt 42,069 8,376 The first 16 chapters of the book of Proverbs -- I 

expected this file to have some similarity with 

Proverbs.txt since this text represents a subset of 
the whole, and should be a good test for detecting 
deletions at the end of a file. 

Proverbs1-24.txt 69,016 13,736 The first 24 chapters of the book of Proverbs -- I 
expected this file to have strong similarity with 

Proverbs.txt since this text represents a subset of 
the whole.  I also expected it to have some similarity 

with Proverbs1-16.txt since it contains those 
chapters also. 

Proverbs25-31.txt 22,368 4,421 The last seven chapters of the book of Proverbs -- I 
expected this file to have low similarity with 

Proverbs.txt since this text represents a subset 
(25%) of the whole.  I expected it to not be similar to 

Proverbs1-16.txt or Proverbs1-24.txt 
since their contents are disjoint. 

TargetSetup.Result.txt 3,115 347 A log file 
usConstitution(copy).t

xt 

48,067 7,669 An exact copy of usConstitution.txt -- I 
expected this file to have perfect similarity with 
usConstitution.txt. 

usConstitution-

BillofRights.txt 

32,006 5,039 The text of the US Constitution without the Bill of 
Rights or any subsequent amendments -- I expected 
this file to have some similarity with the 

usConstitution.txt since this file represents a 
subset of the whole. 

usConstitution- 

noPreamble.txt 

47,728 7,617 The text of the US Constitution without the Preamble -
-   I expected this file to have strong similarity with the 

usConstitution.txt since this file represents a 
subset of the whole.  It should be a good test for 
detecting deletions at the beginning of a file. 

usConstitution.txt 48,067 7,669 The text of the US Constitution -- I expected this file to 
have perfect similarity with 

usConstitution(copy).txt and some 

similarity with usConstitution-

BillofRights.txt and usConstitution-

noPreamble.txt since those files represented 
subsets of this file’s content. 

usDOI-1.txt 8,147 1,337 The text of the US Declaration of Independence less 
one sentence near the middle of the file -- I expected 

this file to have strong similarity with usDOI.txt 
since they were nearly identical, and some similarity 

with usDOI-Grievances.txt since that file was a 
subset of this one.  This should also be a good test for 
detecting a small deletion in the middle of the 
document. 

usDOI-Grievances.txt 

 

4,093 682 The text of the US Declaration of Independence less 
the grievances against the King of England -- I expected 

this file to have low similarity with usDOI.txt and 

usDOI-1.txt since there is a 50% difference in their 
contents. 
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File Name Chars Words Remarks 
usDOI.txt 8,179 1,341 The text of the US Declaration of Independence -- I 

expected this file to have strong similarity with 

usDOI-1.txt since they were nearly identical and 

some similarity with usDOI-Grieveances.txt 
since that file contained a subset of this file’s content. 

3.3 Similarity Index Methodologies 
This section briefly describes each methodology used to calculate the SI.  These methodologies were 

further affected by the type of input stream (Section 3.4) and variations in processing the input stream 

(Section 3.5). 

1. Sum of Java hashCode() fingerprints – Used Java String.hashCode()2 to generate 

hashes of k-grams and summed all of the hashes [9]. 

2. Rabin hash fingerprints - Used Java String.hashCode() to generate hashes of k-grams and 

produced a Rabin hash of the entire set of fingerprints. 

3. Sum 0 mod 25 sketch – Filtered fingerprints that were 0 mod 25 (i.e., evenly divisible by 25) to 

produce a sketch and summed the sketch [9] [23]. 

4. Rabin hash 0 mod 25 sketch – Created a Rabin hash of the 0 mod 25 sketch. 

5. Sum of Winnowing sketch – Used a Winnowing algorithm [4] to produce the sketch.  Summed all 

the fingerprints in the sketch. 

6. Rabin hash of Winnowing sketch – Created a Rabin hash of the Winnowed sketch. 

7. Sum low 400 sketch - Summed the 400 lowest value fingerprints.  400 was chosen to be similar 

to the process described in [9] [14]. 

8. Rabin hash of low 400 sketch – Created Rabin hash of the 400 lowest value fingerprints. 

9. Sum high 400 sketch - As a variation on approach #7, summed the 400 highest value 

fingerprints. 

10. Rabin hash high 400 sketch – Created Rabin hash of the 400 highest value fingerprints. 

11. Sum random 1/3 sketch - Randomly created a sketch of 1/3 of the fingerprints and summed the 

sketch.  This was not expected to provide good results since an inconsistent set of fingerprints is 

chosen from each document [13]. 

12. Rabin hash random 1/3 sketch – Created a Rabin hash of the random 1/3 sketch of the 

fingerprints. 

13. Sum 200 most frequent words sketch – Created fingerprints of the 200 most frequently used 

words in each document and summed the sketch.  This is similar to the Textract method used in 

[9]. 

14. Super shingle of all fingerprints – Reduce the entire set of fingerprints to a single value by 

repeatedly producing k-grams of the fingerprint set [9] [14]. 

3.4 Input Streams 
Each method of generating the SI was tested using three different input streams: 

                                                           
2
 Unless explicitly stated, the Java String.hashCode() method was used to create fingerprints of k-grams. 
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1. The input was treated as a stream of characters. 

2. The input was treated as a stream of words; all whitespace was removed except for one space 

between each word. 

3. The input was treated as a stream of Soundex [15] tokens.  All words were converted to 

Soundex tokens in an effort to introduce fuzziness into the content. 

As each method listed in Section 3.3 was executed using a different input stream it was assigned a new 

method number to aid in tracking.  The methods were numbered as follows: 

tracking method number = method number + offset number 

Table 2   Tracking Method Numbers. 

Method 
Number 

Tracking 
Offset 

Input Stream Tracking 
Method 
Number 

1 – 14 0 Character-based stream 1 - 14 

1 – 14 20 Word-based stream 21 – 34 

1 – 14 40 Soundex token-based stream 41 - 54 

Note: Method 13 (Sum 200 most frequent words sketch) does not have a character stream-based 

equivalent. 

3.5 Input Stream Processing Variations 
In addition to each input stream, each method was executed using four different input stream 

processing variations.  The purpose for varying the processing on the input stream was to further distill 

the salient characteristics of each document. 

3.5.1 Methods 1 – 14 

Methods 1-14 used a character stream as inputs.  Table 3  lists the input stream processing variations 

applied to each character stream. 

Table 3   Input Stream Process Variations for Methods 1 – 14. 

Process 
Variation 

With 
Vowels 

With Stop 
Words 

Comments 

A Yes Yes This variation represented the unadulterated character stream. 

B Yes No All of the stop words were removed from the input stream of 
characters since they are words common to all files and provided no 
differentiation. 

C No Yes All vowels were removed from the input stream of characters since 
they were common to all content and provided no differentiation. 

D No No All stop words and vowels were removed from the input stream of 
characters.  This represented the most unique version of the content. 

3.5.2 Methods 21 – 34 and Methods 41 - 54 

Methods 21 – 54 used word-based input streams.  Table 4  lists the input stream process variations 

applied to each word stream. 
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Table 4   Input Stream Process Variations for Methods 21 – 54. 

Process 
Variation 

With Stop 
Words 

With 
Duplicate 

Words 

Comments 

A Yes Yes This variation represented the unadulterated word stream. 

B No Yes All stop words were removed from the input stream, but duplicate 
words were allowed to stay. 

C Yes No Stop words were allowed to stay in the input stream, but all duplicate 
words were removed. 

D No No All stop words and duplicate words were removed from the input 
stream.  This represented the most unique version of the content. 

3.6 Process Parameters 
Each run of the experiment executed each of the methods using each input stream variation and input 

stream processing variation discussed in Sections 3.3, 3.4, 3.5 with the following process parameters: 

 k – the size of the k-gram. 

 w – the size of the sliding window used in the Winnowing process. 

Four runs of the experiment were conducted with the following process parameters: 

Table 5   k and w process parameters 

Run k W 
1 4 5 

2 8 12 

3 16 25 

4 40 100 

 

As discussed in [5] [6], a k that was too large resulted in unrelated documents having too much 

commonality (false positives), while a k that was too small exaggerated minor differences and resulted 

in similar documents having divergent fingerprints.  [6] suggested that a k in the range of 3 – 10 would 

give the best results.  Given this knowledge, I expected the run with k = 8 to produce the most accurate 

results. 

4 Analysis 
One of the most difficult parts of the experiment was determining how to score the results and 

determine whether a combination of methodology, input stream, input stream process variation, and 

process parameters produced a good SI. 

Each run of the experiment produced a large comma separated value (CSV) file that was loaded into 

Excel for analysis.  To begin, I build a set of matrices for each run that compared each document’s SI to 

every other document’s SI in the collection.  I focused my attention on three zones in these matrices; 

namely where the documents I knew were similar were compared.  Section 4.1 discusses these zones 

and their expected similarity. 
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4.1 Expected Results 
Table 6  , Table 7  , and Table 8  depict what I expected the scores to reveal, expressed as similarity.  The 

justifications for these expectations were discussed in Section 3.2. 

Table 6   Zone 1 – Proverbs Collection 

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt 

Proverbs.txt Exact Similar Similar Low Similarity 

Proverbs1-16.txt Similar Exact Similar None 

Proverbs1-24.txt Similar Similar Exact None 

Proverbs25-31.txt Low Similarity None None Exact 

 

Table 7   Zone 2 – Constitution Collection 

 usConstitution 
(copy).txt 

usConstitution-
BillofRights.txt 

usConstitution-
noPreamble.txt 

usConstitution.txt 

usConstitution 
(copy).txt 

Exact Similar Similar Exact 

usConstitution-
BillofRights.txt 

Similar Exact Similar Medium 

usConstitution-
noPreamble.txt 

Similar Similar Exact Similar 

usConstitution.txt 
 

Exact Similar Similar Exact 

 

Table 8   Zone 3 – Declaration of Independence Collection 

 usDOI-1.txt usDOI-Grievances 
.txt 

usDOI.txt 

usDOI-1.txt Exact Low Similarity Similar 

usDOI-
Grievances .txt 

Low Similarity Exact Low Similarity 

usDOI.txt Similar Low Similarity Exact 

 

4.2 Evaluation of Results 
To determine if the documents were similar, I calculated an upper and lower bound for each 

document’s SI, and then compared each document’s SI to this interval.  I chose a threshold of 30% to 

calculate the bounds.  Figure 2 depicts this process graphically. 

if (SIlower < SI2 < SIupper) then SI2 is similar to SI 

Any SI falling between the bounds was regarded as a hit on a similar document and scored as a 1.  Any 

hit outside of a zone discussed in section 4.1 was deemed a false positive, meaning the SI indicated the 

documents were similar though I knew they were not.  Any miss (scored as a 0) inside a zone (the SI 

indicated the documents were not similar though I knew they were) was deemed a false negative. 
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Figure 2  SI Upper and Lower Bounds 

Using the notion of false negatives, false positives, and hits, I constructed a score for each combination 

of methods, input streams, input stream process variations, and process parameters by taking the ratio 

of correct indicators to incorrect indicators. 

score = correct indicators / (false negatives + false positives) 

Using this methodology, I looked for combinations of methods, input variation, process variations, and 

process parameters with the highest scores. 

5 Results 
Using the evaluation methodology discussed in section 4.2, I found 104 (out of 672) candidate 

combinations with scores > 1.0.  From this set, I chose the 5 highest scoring combinations of method, 

input stream, input stream processing variations, and process parameters for further investigation.  

These top five candidates are listed in Table 9  . 

Table 9   Results 

Method 

Input 
Stream 
Process 

Variation k w 
False 

Positives 
False 

Negatives Correct Score 
43 B 40 100 0 10 35 3.50 

47 C 40 100 14 5 40 2.11 

43 B 4 5 3 13 32 2.00 

3 B 16 25 8 10 35 1.94 

21 B 40 100 2 14 31 1.94 

5.1 Observations 

 Input stream process variation B (stop words removed, but duplicate words kept) was used by 

4/5 candidates. 

lower
bound

upper
bound

SI

(SI - |SI*0.3|) (SI + |SI*0.3|)

SI2
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 Method 43 produced two of the top five scores using the same input stream process variation 

but different process parameters. 

 The w process parameter can be ignored since none of the candidate methods used it. 

 Methods 3 and 43 used essentially the same process (sum the 0 mod 25 sketch) to arrive at the 

SI.  The difference between them was that Method 3 operated on strings and Method 43 on 

words. 

 No methods that used a k = 8 appear in the list.  In fact, no method using k = 8 made the top ten.  

Based upon the literature [6], I expected this process parameter to yield the best results. 

5.2 Analysis of Results 
To really determine the method and combination of input stream, input stream process variations, and 

process parameters that produced the best results required examining each method’s output 

meticulously.  In particular, I was looking for places where false negatives were acceptable (e.g., where 

some documents were subsets of one another).  False positives were also acceptable in some cases 

since the idea was that these documents would be suggested to an end user who would make the final 

decision on similarity.  The following sections examine each of the top five candidate methods in greater 

detail. 

5.2.1 Method 43B (w=40, k=100) : 3.50 

This method produced results in complete agreement with the expected values.  Recall that a value of 

“1” indicated the two documents were similar (within the +/- 30% threshold), while a “0” indicated they 

were not. 

Table 10   Method 43B (k=40, w=100), Zone 1 – Proverbs Collection 

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt 

Proverbs.txt 1 1 1 0 

Proverbs1-16.txt 1 1 1 0 

Proverbs1-24.txt 1 1 1 0 

Proverbs25-31.txt 0 0 0 1 

 

Table 11   Method 43B (k=40, w=100), Zone 2 – Constitution Collection 

 usConstitution 
(copy).txt 

usConstitution-
BillofRights.txt 

usConstitution-
noPreamble.txt 

usConstitution.txt 

usConstitution 
(copy).txt 

1 1 1 1 

usConstitution-
BillofRights.txt 

1 1 1 1 

usConstitution-
noPreamble.txt 

1 1 1 1 

usConstitution.txt 
 

1 1 1 1 
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Table 12   Method 43B (k=40, w=100), Zone 3 – Declaration of Independence Collection 

 usDOI-1.txt usDOI-Grievances 
.txt 

usDOI.txt 

usDOI-1.txt 1 0 1 

usDOI-
Grievances .txt 

0 1 0 

usDOI.txt 1 0 1 

5.2.2 Method 47C (k=40, w=100) : 2.11 

This method produced very good results within the zones; however, it also produced 14 false positives 

that hurt its overall score. 

Table 13   Method 47C (k=40, w=100), Zone 1 – Proverbs Collection 

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt 

Proverbs.txt 1 1 1 0 

Proverbs1-16.txt 0 1 1 1 

Proverbs1-24.txt 1 1 1 1 

Proverbs25-31.txt 0 1 0 1 

 

Table 14   Method 47C (k=40, w=100), Zone 2 – Constitution Collection 

 usConstitution 
(copy).txt 

usConstitution-
BillofRights.txt 

usConstitution-
noPreamble.txt 

usConstitution.txt 

usConstitution 
(copy).txt 

1 1 1 1 

usConstitution-
BillofRights.txt 

1 1 0 1 

usConstitution-
noPreamble.txt 

1 1 1 1 

usConstitution.txt 
 

1 1 1 1 

 

Table 15   Method 47C (k=40, w=100), Zone 3 – Declaration of Independence Collection 

 usDOI-1.txt usDOI-Grievances 
.txt 

usDOI.txt 

usDOI-1.txt 1 1 1 

usDOI-
Grievances .txt 

1 1 1 

usDOI.txt 1 1 1 

5.2.3 Method 43B (w=4, k=5) : 2.00 

This method produced results in conformance with the expected values in the Proverbs and Declaration 

of Independence collections, but did not do as well with the US Constitution collection (3 false 

negatives).  These misses in conjunction with 3 false positives hurt its score. 
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Table 16   Method 43B (k=4, w=5), Zone 1 – Proverbs Collection 

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt 

Proverbs.txt 1 1 1 0 

Proverbs1-16.txt 1 1 1 0 

Proverbs1-24.txt 1 1 1 0 

Proverbs25-31.txt 0 0 0 1 

 

Table 17   Method 43B (k=4, w=5), Zone 2 – Constitution Collection 

 usConstitution 
(copy).txt 

usConstitution-
BillofRights.txt 

usConstitution-
noPreamble.txt 

usConstitution.txt 

usConstitution 
(copy).txt 

1 1 1 1 

usConstitution-
BillofRights.txt 

0 1 0 0 

usConstitution-
noPreamble.txt 

1 1 1 1 

usConstitution.txt 
 

1 1 1 1 

 

Table 18   Method 43B (k=4, w=5), Zone 3 – Declaration of Independence Collection 

 usDOI-1.txt usDOI-Grievances 
.txt 

usDOI.txt 

usDOI-1.txt 1 0 1 

usDOI-
Grievances .txt 

0 1 0 

usDOI.txt 1 0 1 

5.2.4 Method 3B (w=16, k=25) : 1.94 

This method performed perfectly with respect to the expected values in each zone.  However, it 

produced 8 false positives (it confused the DeleteDocument.class binary file with the US 

Constitution collection).  These false positives degraded its overall score; however, false positives such 

as these could be easily dismissed by a user upon an initial inspection of the results. 

Table 19   Method 3B (k=16, w=25), Zone 1 – Proverbs Collection 

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt 

Proverbs.txt 1 1 1 0 

Proverbs1-16.txt 1 1 1 0 

Proverbs1-24.txt 1 1 1 0 

Proverbs25-31.txt 0 0 0 1 
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Table 20   Method 3B (k=16, w=25), Zone 2 – Constitution Collection 

 usConstitution 
(copy).txt 

usConstitution-
BillofRights.txt 

usConstitution-
noPreamble.txt 

usConstitution.txt 

usConstitution 
(copy).txt 

1 1 1 1 

usConstitution-
BillofRights.txt 

1 1 1 1 

usConstitution-
noPreamble.txt 

1 1 1 1 

usConstitution.txt 
 

1 1 1 1 

 

Table 21   Method 3B (k=16, w=25), Zone 3 – Declaration of Independence Collection 

 usDOI-1.txt usDOI-Grievances 
.txt 

usDOI.txt 

usDOI-1.txt 1 0 1 

usDOI-
Grievances .txt 

0 1 0 

usDOI.txt 1 0 1 

5.2.5 Method 21B (w=40, k=100) : 1.94 

This method also performed well, except for within the US Constitution collection, thus accounting for 

its degraded score. 

Table 22   Method 21B (k=40, w=100), Zone 1 – Proverbs Collection 

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt 

Proverbs.txt 1 1 1 0 

Proverbs1-16.txt 1 1 1 0 

Proverbs1-24.txt 1 1 1 0 

Proverbs25-31.txt 0 0 0 1 

 

Table 23   Method 21B (k=40, w=100), Zone 2 – Constitution Collection 

 usConstitution 
(copy).txt 

usConstitution-
BillofRights.txt 

usConstitution-
noPreamble.txt 

usConstitution.txt 

usConstitution 
(copy).txt 

1 1 1 1 

usConstitution-
BillofRights.txt 

0 1 0 0 

usConstitution-
noPreamble.txt 

1 0 1 1 

usConstitution.txt 
 

1 1 1 1 
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Table 24   Method 21B (k=40, w=100), Zone 3 – Declaration of Independence Collection 

 usDOI-1.txt usDOI-Grievances 
.txt 

usDOI.txt 

usDOI-1.txt 1 0 1 

usDOI-
Grievances .txt 

0 1 0 

usDOI.txt 1 0 1 

6 Conclusion 
After reviewing the detailed results in Section 5, it became clear that the best results were obtained 

using the following combination of method, input stream, input stream processing variation, and 

process parameters: 

 Method: 43 (sum 0 mod 25) 

 Input Stream:  Soundex 

 Input Stream Processing Variation: B (remove stop words, retain duplicates) 

 k:  40 (size of the k-grams sampled) 

 w:  100 (not applicable for this method) 

This is not a totally unexpected result.  [9] used a similar approach to validate their own methodology, 

and [6] claims this is how Alta Vista has been operating for years; however, I believe my introduction of 

the Soundex token stream has improved upon their results.  A nice – and probably the most important – 

feature of this method is that it consistently always chooses the same fingerprints from the collection of 

shingles.  Even if text has been inserted or deleted in a document, eventually the shingling process 

produces the same shingles as the original, and the 0 mod 25 filtering function consistently chooses the 

same set of fingerprints for the sketch. 

Though my methodology was rather crude and brutish, and doesn’t carry nearly the mathematical 

elegance of [1] [2] [4] [6], I have proven that the notion of reducing an entire document to a numeric 

value and using that value to gauge its similarity among other documents is a viable concept.  I have also 

proven that the introduction fuzziness via the Soundex algorithm has improved the method’s accuracy.  

Soundex introduced fuzziness by coalescing similarly spelled and sounding words into a single token.  

However, allowing duplicate words to remain in the input stream ensured that the token stream 

retained enough uniqueness to make the SI values distinguishable.   If the addition of Soundex had had 

no impact, I would have expected to see all of the Method 43 scores (i.e., A, B, C and D) to be the closer.  

6.1 Final Observations 
A few final observations: 

 The same method for calculating the SI must be used across the entire corpus of documents in 

order for the numbers to properly interact.  This seems intuitively obvious and shouldn’t be a 

surprise; the same limitation exists in cryptography.  You can’t compare MD5 hashes and SHA-1 

hashes for the same document and expect them to match. 
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 This experiment was conducted on a very small set of documents.  To really determine the 

robustness of the process and the theory, it should be run against a much larger collection of 

documents. 

 The most frequently occurring method in the top 104 results was method 9 (including method 9, 

29, and 49 – the sum of the highest 200 shingles) at 23 times.  The second most frequently 

occurring method was 3 (3, 23, 43 – sum of 0 mod 25) at 21 times, and then method 7 (7, 27, 47 

– sum of the lowest value 200 shingles) at 21 times.  Using the lowest valued shingles (and by 

extension, the highest valued shingles) is discussed in [14].  Figure 3 depicts the frequency of 

methods in the top 104 results. 

 

Figure 3  Most Frequent Used Methods in Top 104 Results 

 I find it curious that no one has pursued this idea further than [9].  Perhaps they have proven 

that it is mathematically unsound and there is no reason to pursue it further?  Regardless, I have 

proven that this is relatively inexpensive (effort-, processing- and storage-wise) and a useful way 

to detect similar or nearly duplicate documents in a corpus. 

With regard to the original question that spurred this endeavor:  yes, it is possible to determine if 

similar documents exist in a repository.  And yes, this determination can be made at the time of 

ingestion (i.e., checkin).  There are likely numerous ways this could be accomplished (e.g., the 

Lucene MoreLikeThis API); however, using the Similarity Index as described here is a quick and 

easy way to make a better than fair assessment of content, without the need for a full-text index or 

database. 

6.2 Post Script 
I created a relatively simple Aspect in Document 6.6 (by repurposing some of the code from the 

experiment) that generated SI values.  I imported my document collection in to Documentum as basic 

dm_documents and applied the Aspect to each document in the collection.  I then endeavored to 

0

2

4

6

8

10

12

14

49 27 29 47 3 43 25 35 45 41 21 23 1 4 44 5 30

Method Frequency in Top 104



 

M. Scott Roth / Armedia  18 
 

identify similar documents using DQL.  I learned that DQL doesn’t work well with large numbers, but I 

was able to find similar documents using a query. 

My approach was to find the SI value of my current document, determine what 30% of that value was, 

and then use that percentage to establish an upper and lower bound for the query.  Something like this: 

SELECT r_object_id 

FROM dm_document 

WHERE si_aspect.value > [lower bound].0 

AND si_aspect.value < [upper bound].0 

To force DQL to process the upper and lower bounds as double precision variables, I had to tack a “0” 

onto the end of each boundary number. 

 

This DQL produced results in line with the experiment. 
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