

M. Scott Roth / Armedia 1

The Similarity Index

M. Scott Roth

July 1, 2011

Abstract

Is it possible to calculate a hash value for a document that captures its salient characteristics,

such that a repository can be queried for like values and retrieve all “similar” documents? If so,

similar documents could be easily identified by a simple SQL query without the need for a full

text search engine. Such a value would allow systems to quickly identify duplicate or similar

content before it is checked into a repository, introduced to an index, or returned in a query

result. Additionally, this value could assist with identifying other content a user might be

interested in, though they did not explicitly query for it.

This paper endeavors to answer this question by exploring the corpus of existing research in this

and related areas, and reporting the results of experimentation. This investigation was

conducted with the intent of implementing such a solution in a Documentum environment.

M. Scott Roth / Armedia 2

1 Introduction
Recently, an intriguing question was raised on the EDN. The gist of the question was, during the checkin

of a document, is there a quick and easy way to determine if a similar document already exists in the

repository?[18] If the question had been, is there a way to identify exact duplicate documents, the

answer would be “yes”. This could be accomplished using a cryptographic hash such as MD5 or SHA-1

[5] [8]. However, because the questioner was interested in “similar” documents, cryptographic hashes

were not the solution, since cryptographic hash functions are designed to detect the slightest

perturbation of the content [16]. This notion of identifying similar documents sparked an idea in my

mind.

The ability to find similar documents exists in the Lucene MoreLikeThis API [7], but would require

some customization to make it work in Webtop and xPlore. The MoreLikeThis API essentially

extracts salient words from the current document and uses them to construct a full text query against

the Lucene indexes. I was more interested in determining if it was possible to calculate a number that

would represent the primary characteristics of a document. If it was, I could query a repository for all

documents within +/- 30%1 of a known value and call those documents “similar”. The use of such a

number would allow the detection of similar documents in repositories not using xPlore (or Lucene), and

could easily be implemented with an Aspect. This value would be the product of a different kind of

hash, one where slight differences in content were ignored. I call this value the similarity index, SI.

2 Background
I discovered that there is a vast field of academic research related to the idea of detecting near-

duplicate documents, for example: [1] [3] [5] [6] [9] [10] [17] [18]. Closely related to this field of

research is the notion of document clustering (putting similar documents in the same indexing bin) [14]

and content analytics (generating statistics about documents to improve search and retrieval) [22]. It's

pretty heady stuff but fun to read. I included a select bibliography at the end of this paper if you are

interested.

Most of the cited research was conducted with Internet search engines in mind (e.g., AltaVista, Google)

to reduce redundant results and keep near-duplicate documents out of the indexes. In these scenarios,

a collection of numeric fingerprints of a document (called a sketch) was stored in a database and

similarity was determined by how many fingerprints two documents shared. The more fingerprints two

documents shared, the more similar they were deemed to be. This idea and basic process has

applicability beyond just Internet search engines. These same concepts and processes have been

employed to detect duplicated, copied, and refactored source code [10] [11], plagiarism in academic

papers [13], copyright infringement [13], articles derived from the same source material [5], and even to

suggest products consumers might be interested in based upon the contents of their electronic

shopping carts [5].

1
 This is a fairly arbitrary value, but one that seems to work well; some authors declared documents similar if they

contained only 50% [9] common fingerprints, others 90% [6].

M. Scott Roth / Armedia 3

My idea was to take this concept one step further and reduce the sketch to a single value, the Similarity

Index (SI), thus eliminating the need for a database to store the sketch. If the sketch could be reduced

to a single value, this value could easily be stored as a property of a document or as a single-valued

attribute in Documentum. The idea of reducing the sketch to a single value was discussed and

implemented in passing by [9] as a way to quickly determine the accuracy with which their methodology

detected duplicate or near-duplicate documents.

One thing to note is what I (and the other authors [1] [5] [9] [17]) mean by similar documents. Similar

documents are those which share essentially the same words in the same sequence (syntactic

similarity). These documents do not necessarily share similar meanings. Detection of this sort would

require the analysis of each word, its meaning, sentence constructs, etc. For the purposes of this paper,

the format of documents is inconsequential; the experiment operates on only canonical (i.e., text) forms

of documents.

The rest of this paper will discuss the experiment I conducted, the methods I used to produce the

Similarity Index, the results of the experiment, and the utility of the computed value in identifying

similar documents.

3 The Experiment
To conduct the experiment, I wrote a Java class that implemented the process depicted in Figure 1 and

used several freely-available libraries to implement some of the hairier mathematics and encoding [19]

[20]. The class implemented fourteen different methods for producing the SI value. These methods are

discussed in Section 3.3. In addition to these different methods, I used three different input streams:

characters, words and Soundex [15] tokens. These input streams are discussed in Section 3.4 and 3.5.

Finally, I assembled a collection of test documents that I expected to give a variety of results. These

documents are discussed in Section 3.2.

3.1 Overview
There are various techniques for analyzing content for similarity [5] [12] [17]. Most of these techniques

begin by slicing and dicing content into k-grams to produce shingles, fingerprints, and sketches (see

Figure 1). A k-gram is an overlapping sequence of characters or words of k length. Shingles are numeric

representations of the k-grams produced by hashing the k-grams. Some researches [9] simply used the

Java String.hashCode() method to produce the hash for each k-gram, while others employed a Rabin

hash [2]. Creating shingles produces roughly as many shingles as there are characters or words in the

original content. To be efficient, this set must be reduced by a filtering function to a set of fingerprints

(i.e., hashed shingle values that represent the salient features of the content). Various methods are

proposed for conducting this set reduction including: keeping only those shingles evenly divisible by 25

[1], using a Winnowing function [3] [4], or keeping only the 400 highest valued shingles [3]. The filtered

collection of fingerprints is called a sketch.

For purposes of this explanation, assume the incoming document stream is the first sentence from

Lincoln’s Gettysburg Address:

M. Scott Roth / Armedia 4

Four score and seven years ago our fathers brought forth on this continent, a new nation,

conceived in Liberty, and dedicated to the proposition that all men are created equal.

Figure 1 k-grams, Shingles, Fingerprints and Sketches

3.1.1 k-grams of Letters and Words

k-grams were constructed by reading either the incoming character or word streams and simply

appending successive characters (words) to a String until it equaled k length. The length, k, was

controlled by a process parameter (see Section 3.6) and varied across runs of the experiment.

In Figure 1 , the first nine character k-grams (k = 4) for the beginning of Lincoln’s Gettysburg Address are:

{ (four), (ours), (ursc), (rsco), (scor),

(core), (orea), (rean), (eand) }

The first four word k-grams (k=4) look like this:

{ (four score and seven), (score and seven years),

(and seven years ago), (seven years ago our) }

M. Scott Roth / Armedia 5

This overlapping (i.e., shingle effect) provides some insulation against inserted and deleted characters

(words) in the text. Because the shingles are generated from a sliding window of k length, eventually

any inserted or deleted letters will be overcome, and the shingles produced will resemble those of the

original document. A good filtering algorithm will pick up the same shingles from both an original and a

near duplicate document, thus eliminating the difference the inserted or deleted characters (words)

made.

3.1.2 Hash Function

The purpose of the hash function was to encode each shingle into a unique fingerprint. I used Java’s

String.hashCode() method to hash k-grams into fingerprints. [9] submits that this hash is sufficiently

collision-resistant for this purpose. More details about Java’s String.hashCode() method can be found in

[21].

3.1.3 Filter Function

The filter function proved to be a key aspect of the process. As mentioned previously, the filter function

determined which fingerprints were included in the sketch and which were not. The crux of the function

was that it must be selective enough to retain the major characteristics of a document without creating

a sketch that was so liberal there was no differentiation among documents. Filtering techniques are

discussed in more detail in Section 3.3.

3.1.4 Aggregation Function

The aggregation function endeavored to reduce the sketch produced by the filter function to a single

number. Like the filter function discussed in Section 3.1.3, the aggregation function needed to produce

a value that represented the character of the sketch without being too generic or restrictive. I took

three approaches to aggregation. The first was to simply sum the fingerprints in the sketch [9]. The

second was to recursively produce k-grams from the fingerprints in the sketch until only one k-gram

remained. This has been referred to as a super shingle by [9] [14] [23]. The third approach was to

produce a Rabin hash of the sketch.

3.1.5 Similarity Index

The Similarity Index was the final result of the experiment. Its goal, as stated earlier, was to represent

the salient features of a document as a single value. With the SI, it was possible to determine if two

documents were similar by comparing the difference between their SI values. If the difference between

the values was < 30%, the documents were deemed similar.

3.2 The Document Collection
Table 1 describes the document collection used in the experiment.

Table 1 Document Collection

File Name Chars Words Remarks
AddToClipboardAction.j

ava

3,632 213 The source code for a Java class file

DeleteDocument.class 18,468 2,711 A compiled Java class file
Gettysburg.txt 1,473 270 The text to Lincoln’s Gettysburg Address
Proverbs.txt 91,384 19,157 The book of Proverbs from the Bible

M. Scott Roth / Armedia 6

File Name Chars Words Remarks
Proverbs1-16.txt 42,069 8,376 The first 16 chapters of the book of Proverbs -- I

expected this file to have some similarity with

Proverbs.txt since this text represents a subset of
the whole, and should be a good test for detecting
deletions at the end of a file.

Proverbs1-24.txt 69,016 13,736 The first 24 chapters of the book of Proverbs -- I
expected this file to have strong similarity with

Proverbs.txt since this text represents a subset of
the whole. I also expected it to have some similarity

with Proverbs1-16.txt since it contains those
chapters also.

Proverbs25-31.txt 22,368 4,421 The last seven chapters of the book of Proverbs -- I
expected this file to have low similarity with

Proverbs.txt since this text represents a subset
(25%) of the whole. I expected it to not be similar to

Proverbs1-16.txt or Proverbs1-24.txt
since their contents are disjoint.

TargetSetup.Result.txt 3,115 347 A log file
usConstitution(copy).t

xt

48,067 7,669 An exact copy of usConstitution.txt -- I
expected this file to have perfect similarity with
usConstitution.txt.

usConstitution-

BillofRights.txt

32,006 5,039 The text of the US Constitution without the Bill of
Rights or any subsequent amendments -- I expected
this file to have some similarity with the

usConstitution.txt since this file represents a
subset of the whole.

usConstitution-

noPreamble.txt

47,728 7,617 The text of the US Constitution without the Preamble -
- I expected this file to have strong similarity with the

usConstitution.txt since this file represents a
subset of the whole. It should be a good test for
detecting deletions at the beginning of a file.

usConstitution.txt 48,067 7,669 The text of the US Constitution -- I expected this file to
have perfect similarity with

usConstitution(copy).txt and some

similarity with usConstitution-

BillofRights.txt and usConstitution-

noPreamble.txt since those files represented
subsets of this file’s content.

usDOI-1.txt 8,147 1,337 The text of the US Declaration of Independence less
one sentence near the middle of the file -- I expected

this file to have strong similarity with usDOI.txt
since they were nearly identical, and some similarity

with usDOI-Grievances.txt since that file was a
subset of this one. This should also be a good test for
detecting a small deletion in the middle of the
document.

usDOI-Grievances.txt

4,093 682 The text of the US Declaration of Independence less
the grievances against the King of England -- I expected

this file to have low similarity with usDOI.txt and

usDOI-1.txt since there is a 50% difference in their
contents.

M. Scott Roth / Armedia 7

File Name Chars Words Remarks
usDOI.txt 8,179 1,341 The text of the US Declaration of Independence -- I

expected this file to have strong similarity with

usDOI-1.txt since they were nearly identical and

some similarity with usDOI-Grieveances.txt
since that file contained a subset of this file’s content.

3.3 Similarity Index Methodologies
This section briefly describes each methodology used to calculate the SI. These methodologies were

further affected by the type of input stream (Section 3.4) and variations in processing the input stream

(Section 3.5).

1. Sum of Java hashCode() fingerprints – Used Java String.hashCode()2 to generate

hashes of k-grams and summed all of the hashes [9].

2. Rabin hash fingerprints - Used Java String.hashCode() to generate hashes of k-grams and

produced a Rabin hash of the entire set of fingerprints.

3. Sum 0 mod 25 sketch – Filtered fingerprints that were 0 mod 25 (i.e., evenly divisible by 25) to

produce a sketch and summed the sketch [9] [23].

4. Rabin hash 0 mod 25 sketch – Created a Rabin hash of the 0 mod 25 sketch.

5. Sum of Winnowing sketch – Used a Winnowing algorithm [4] to produce the sketch. Summed all

the fingerprints in the sketch.

6. Rabin hash of Winnowing sketch – Created a Rabin hash of the Winnowed sketch.

7. Sum low 400 sketch - Summed the 400 lowest value fingerprints. 400 was chosen to be similar

to the process described in [9] [14].

8. Rabin hash of low 400 sketch – Created Rabin hash of the 400 lowest value fingerprints.

9. Sum high 400 sketch - As a variation on approach #7, summed the 400 highest value

fingerprints.

10. Rabin hash high 400 sketch – Created Rabin hash of the 400 highest value fingerprints.

11. Sum random 1/3 sketch - Randomly created a sketch of 1/3 of the fingerprints and summed the

sketch. This was not expected to provide good results since an inconsistent set of fingerprints is

chosen from each document [13].

12. Rabin hash random 1/3 sketch – Created a Rabin hash of the random 1/3 sketch of the

fingerprints.

13. Sum 200 most frequent words sketch – Created fingerprints of the 200 most frequently used

words in each document and summed the sketch. This is similar to the Textract method used in

[9].

14. Super shingle of all fingerprints – Reduce the entire set of fingerprints to a single value by

repeatedly producing k-grams of the fingerprint set [9] [14].

3.4 Input Streams
Each method of generating the SI was tested using three different input streams:

2
 Unless explicitly stated, the Java String.hashCode() method was used to create fingerprints of k-grams.

M. Scott Roth / Armedia 8

1. The input was treated as a stream of characters.

2. The input was treated as a stream of words; all whitespace was removed except for one space

between each word.

3. The input was treated as a stream of Soundex [15] tokens. All words were converted to

Soundex tokens in an effort to introduce fuzziness into the content.

As each method listed in Section 3.3 was executed using a different input stream it was assigned a new

method number to aid in tracking. The methods were numbered as follows:

tracking method number = method number + offset number

Table 2 Tracking Method Numbers.

Method
Number

Tracking
Offset

Input Stream Tracking
Method
Number

1 – 14 0 Character-based stream 1 - 14

1 – 14 20 Word-based stream 21 – 34

1 – 14 40 Soundex token-based stream 41 - 54

Note: Method 13 (Sum 200 most frequent words sketch) does not have a character stream-based

equivalent.

3.5 Input Stream Processing Variations
In addition to each input stream, each method was executed using four different input stream

processing variations. The purpose for varying the processing on the input stream was to further distill

the salient characteristics of each document.

3.5.1 Methods 1 – 14

Methods 1-14 used a character stream as inputs. Table 3 lists the input stream processing variations

applied to each character stream.

Table 3 Input Stream Process Variations for Methods 1 – 14.

Process
Variation

With
Vowels

With Stop
Words

Comments

A Yes Yes This variation represented the unadulterated character stream.

B Yes No All of the stop words were removed from the input stream of
characters since they are words common to all files and provided no
differentiation.

C No Yes All vowels were removed from the input stream of characters since
they were common to all content and provided no differentiation.

D No No All stop words and vowels were removed from the input stream of
characters. This represented the most unique version of the content.

3.5.2 Methods 21 – 34 and Methods 41 - 54

Methods 21 – 54 used word-based input streams. Table 4 lists the input stream process variations

applied to each word stream.

M. Scott Roth / Armedia 9

Table 4 Input Stream Process Variations for Methods 21 – 54.

Process
Variation

With Stop
Words

With
Duplicate

Words

Comments

A Yes Yes This variation represented the unadulterated word stream.

B No Yes All stop words were removed from the input stream, but duplicate
words were allowed to stay.

C Yes No Stop words were allowed to stay in the input stream, but all duplicate
words were removed.

D No No All stop words and duplicate words were removed from the input
stream. This represented the most unique version of the content.

3.6 Process Parameters
Each run of the experiment executed each of the methods using each input stream variation and input

stream processing variation discussed in Sections 3.3, 3.4, 3.5 with the following process parameters:

 k – the size of the k-gram.

 w – the size of the sliding window used in the Winnowing process.

Four runs of the experiment were conducted with the following process parameters:

Table 5 k and w process parameters

Run k W
1 4 5

2 8 12

3 16 25

4 40 100

As discussed in [5] [6], a k that was too large resulted in unrelated documents having too much

commonality (false positives), while a k that was too small exaggerated minor differences and resulted

in similar documents having divergent fingerprints. [6] suggested that a k in the range of 3 – 10 would

give the best results. Given this knowledge, I expected the run with k = 8 to produce the most accurate

results.

4 Analysis
One of the most difficult parts of the experiment was determining how to score the results and

determine whether a combination of methodology, input stream, input stream process variation, and

process parameters produced a good SI.

Each run of the experiment produced a large comma separated value (CSV) file that was loaded into

Excel for analysis. To begin, I build a set of matrices for each run that compared each document’s SI to

every other document’s SI in the collection. I focused my attention on three zones in these matrices;

namely where the documents I knew were similar were compared. Section 4.1 discusses these zones

and their expected similarity.

M. Scott Roth / Armedia 10

4.1 Expected Results
Table 6 , Table 7 , and Table 8 depict what I expected the scores to reveal, expressed as similarity. The

justifications for these expectations were discussed in Section 3.2.

Table 6 Zone 1 – Proverbs Collection

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt

Proverbs.txt Exact Similar Similar Low Similarity

Proverbs1-16.txt Similar Exact Similar None

Proverbs1-24.txt Similar Similar Exact None

Proverbs25-31.txt Low Similarity None None Exact

Table 7 Zone 2 – Constitution Collection

 usConstitution
(copy).txt

usConstitution-
BillofRights.txt

usConstitution-
noPreamble.txt

usConstitution.txt

usConstitution
(copy).txt

Exact Similar Similar Exact

usConstitution-
BillofRights.txt

Similar Exact Similar Medium

usConstitution-
noPreamble.txt

Similar Similar Exact Similar

usConstitution.txt

Exact Similar Similar Exact

Table 8 Zone 3 – Declaration of Independence Collection

 usDOI-1.txt usDOI-Grievances
.txt

usDOI.txt

usDOI-1.txt Exact Low Similarity Similar

usDOI-
Grievances .txt

Low Similarity Exact Low Similarity

usDOI.txt Similar Low Similarity Exact

4.2 Evaluation of Results
To determine if the documents were similar, I calculated an upper and lower bound for each

document’s SI, and then compared each document’s SI to this interval. I chose a threshold of 30% to

calculate the bounds. Figure 2 depicts this process graphically.

if (SIlower < SI2 < SIupper) then SI2 is similar to SI

Any SI falling between the bounds was regarded as a hit on a similar document and scored as a 1. Any

hit outside of a zone discussed in section 4.1 was deemed a false positive, meaning the SI indicated the

documents were similar though I knew they were not. Any miss (scored as a 0) inside a zone (the SI

indicated the documents were not similar though I knew they were) was deemed a false negative.

M. Scott Roth / Armedia 11

Figure 2 SI Upper and Lower Bounds

Using the notion of false negatives, false positives, and hits, I constructed a score for each combination

of methods, input streams, input stream process variations, and process parameters by taking the ratio

of correct indicators to incorrect indicators.

score = correct indicators / (false negatives + false positives)

Using this methodology, I looked for combinations of methods, input variation, process variations, and

process parameters with the highest scores.

5 Results
Using the evaluation methodology discussed in section 4.2, I found 104 (out of 672) candidate

combinations with scores > 1.0. From this set, I chose the 5 highest scoring combinations of method,

input stream, input stream processing variations, and process parameters for further investigation.

These top five candidates are listed in Table 9 .

Table 9 Results

Method

Input
Stream
Process

Variation k w
False

Positives
False

Negatives Correct Score
43 B 40 100 0 10 35 3.50

47 C 40 100 14 5 40 2.11

43 B 4 5 3 13 32 2.00

3 B 16 25 8 10 35 1.94

21 B 40 100 2 14 31 1.94

5.1 Observations

 Input stream process variation B (stop words removed, but duplicate words kept) was used by

4/5 candidates.

lower
bound

upper
bound

SI

(SI - |SI*0.3|) (SI + |SI*0.3|)

SI2

M. Scott Roth / Armedia 12

 Method 43 produced two of the top five scores using the same input stream process variation

but different process parameters.

 The w process parameter can be ignored since none of the candidate methods used it.

 Methods 3 and 43 used essentially the same process (sum the 0 mod 25 sketch) to arrive at the

SI. The difference between them was that Method 3 operated on strings and Method 43 on

words.

 No methods that used a k = 8 appear in the list. In fact, no method using k = 8 made the top ten.

Based upon the literature [6], I expected this process parameter to yield the best results.

5.2 Analysis of Results
To really determine the method and combination of input stream, input stream process variations, and

process parameters that produced the best results required examining each method’s output

meticulously. In particular, I was looking for places where false negatives were acceptable (e.g., where

some documents were subsets of one another). False positives were also acceptable in some cases

since the idea was that these documents would be suggested to an end user who would make the final

decision on similarity. The following sections examine each of the top five candidate methods in greater

detail.

5.2.1 Method 43B (w=40, k=100) : 3.50

This method produced results in complete agreement with the expected values. Recall that a value of

“1” indicated the two documents were similar (within the +/- 30% threshold), while a “0” indicated they

were not.

Table 10 Method 43B (k=40, w=100), Zone 1 – Proverbs Collection

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt

Proverbs.txt 1 1 1 0

Proverbs1-16.txt 1 1 1 0

Proverbs1-24.txt 1 1 1 0

Proverbs25-31.txt 0 0 0 1

Table 11 Method 43B (k=40, w=100), Zone 2 – Constitution Collection

 usConstitution
(copy).txt

usConstitution-
BillofRights.txt

usConstitution-
noPreamble.txt

usConstitution.txt

usConstitution
(copy).txt

1 1 1 1

usConstitution-
BillofRights.txt

1 1 1 1

usConstitution-
noPreamble.txt

1 1 1 1

usConstitution.txt

1 1 1 1

M. Scott Roth / Armedia 13

Table 12 Method 43B (k=40, w=100), Zone 3 – Declaration of Independence Collection

 usDOI-1.txt usDOI-Grievances
.txt

usDOI.txt

usDOI-1.txt 1 0 1

usDOI-
Grievances .txt

0 1 0

usDOI.txt 1 0 1

5.2.2 Method 47C (k=40, w=100) : 2.11

This method produced very good results within the zones; however, it also produced 14 false positives

that hurt its overall score.

Table 13 Method 47C (k=40, w=100), Zone 1 – Proverbs Collection

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt

Proverbs.txt 1 1 1 0

Proverbs1-16.txt 0 1 1 1

Proverbs1-24.txt 1 1 1 1

Proverbs25-31.txt 0 1 0 1

Table 14 Method 47C (k=40, w=100), Zone 2 – Constitution Collection

 usConstitution
(copy).txt

usConstitution-
BillofRights.txt

usConstitution-
noPreamble.txt

usConstitution.txt

usConstitution
(copy).txt

1 1 1 1

usConstitution-
BillofRights.txt

1 1 0 1

usConstitution-
noPreamble.txt

1 1 1 1

usConstitution.txt

1 1 1 1

Table 15 Method 47C (k=40, w=100), Zone 3 – Declaration of Independence Collection

 usDOI-1.txt usDOI-Grievances
.txt

usDOI.txt

usDOI-1.txt 1 1 1

usDOI-
Grievances .txt

1 1 1

usDOI.txt 1 1 1

5.2.3 Method 43B (w=4, k=5) : 2.00

This method produced results in conformance with the expected values in the Proverbs and Declaration

of Independence collections, but did not do as well with the US Constitution collection (3 false

negatives). These misses in conjunction with 3 false positives hurt its score.

M. Scott Roth / Armedia 14

Table 16 Method 43B (k=4, w=5), Zone 1 – Proverbs Collection

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt

Proverbs.txt 1 1 1 0

Proverbs1-16.txt 1 1 1 0

Proverbs1-24.txt 1 1 1 0

Proverbs25-31.txt 0 0 0 1

Table 17 Method 43B (k=4, w=5), Zone 2 – Constitution Collection

 usConstitution
(copy).txt

usConstitution-
BillofRights.txt

usConstitution-
noPreamble.txt

usConstitution.txt

usConstitution
(copy).txt

1 1 1 1

usConstitution-
BillofRights.txt

0 1 0 0

usConstitution-
noPreamble.txt

1 1 1 1

usConstitution.txt

1 1 1 1

Table 18 Method 43B (k=4, w=5), Zone 3 – Declaration of Independence Collection

 usDOI-1.txt usDOI-Grievances
.txt

usDOI.txt

usDOI-1.txt 1 0 1

usDOI-
Grievances .txt

0 1 0

usDOI.txt 1 0 1

5.2.4 Method 3B (w=16, k=25) : 1.94

This method performed perfectly with respect to the expected values in each zone. However, it

produced 8 false positives (it confused the DeleteDocument.class binary file with the US

Constitution collection). These false positives degraded its overall score; however, false positives such

as these could be easily dismissed by a user upon an initial inspection of the results.

Table 19 Method 3B (k=16, w=25), Zone 1 – Proverbs Collection

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt

Proverbs.txt 1 1 1 0

Proverbs1-16.txt 1 1 1 0

Proverbs1-24.txt 1 1 1 0

Proverbs25-31.txt 0 0 0 1

M. Scott Roth / Armedia 15

Table 20 Method 3B (k=16, w=25), Zone 2 – Constitution Collection

 usConstitution
(copy).txt

usConstitution-
BillofRights.txt

usConstitution-
noPreamble.txt

usConstitution.txt

usConstitution
(copy).txt

1 1 1 1

usConstitution-
BillofRights.txt

1 1 1 1

usConstitution-
noPreamble.txt

1 1 1 1

usConstitution.txt

1 1 1 1

Table 21 Method 3B (k=16, w=25), Zone 3 – Declaration of Independence Collection

 usDOI-1.txt usDOI-Grievances
.txt

usDOI.txt

usDOI-1.txt 1 0 1

usDOI-
Grievances .txt

0 1 0

usDOI.txt 1 0 1

5.2.5 Method 21B (w=40, k=100) : 1.94

This method also performed well, except for within the US Constitution collection, thus accounting for

its degraded score.

Table 22 Method 21B (k=40, w=100), Zone 1 – Proverbs Collection

 Proverbs.txt Proverbs1-16.txt Proverbs1-24.txt Proverbs25-31.txt

Proverbs.txt 1 1 1 0

Proverbs1-16.txt 1 1 1 0

Proverbs1-24.txt 1 1 1 0

Proverbs25-31.txt 0 0 0 1

Table 23 Method 21B (k=40, w=100), Zone 2 – Constitution Collection

 usConstitution
(copy).txt

usConstitution-
BillofRights.txt

usConstitution-
noPreamble.txt

usConstitution.txt

usConstitution
(copy).txt

1 1 1 1

usConstitution-
BillofRights.txt

0 1 0 0

usConstitution-
noPreamble.txt

1 0 1 1

usConstitution.txt

1 1 1 1

M. Scott Roth / Armedia 16

Table 24 Method 21B (k=40, w=100), Zone 3 – Declaration of Independence Collection

 usDOI-1.txt usDOI-Grievances
.txt

usDOI.txt

usDOI-1.txt 1 0 1

usDOI-
Grievances .txt

0 1 0

usDOI.txt 1 0 1

6 Conclusion
After reviewing the detailed results in Section 5, it became clear that the best results were obtained

using the following combination of method, input stream, input stream processing variation, and

process parameters:

 Method: 43 (sum 0 mod 25)

 Input Stream: Soundex

 Input Stream Processing Variation: B (remove stop words, retain duplicates)

 k: 40 (size of the k-grams sampled)

 w: 100 (not applicable for this method)

This is not a totally unexpected result. [9] used a similar approach to validate their own methodology,

and [6] claims this is how Alta Vista has been operating for years; however, I believe my introduction of

the Soundex token stream has improved upon their results. A nice – and probably the most important –

feature of this method is that it consistently always chooses the same fingerprints from the collection of

shingles. Even if text has been inserted or deleted in a document, eventually the shingling process

produces the same shingles as the original, and the 0 mod 25 filtering function consistently chooses the

same set of fingerprints for the sketch.

Though my methodology was rather crude and brutish, and doesn’t carry nearly the mathematical

elegance of [1] [2] [4] [6], I have proven that the notion of reducing an entire document to a numeric

value and using that value to gauge its similarity among other documents is a viable concept. I have also

proven that the introduction fuzziness via the Soundex algorithm has improved the method’s accuracy.

Soundex introduced fuzziness by coalescing similarly spelled and sounding words into a single token.

However, allowing duplicate words to remain in the input stream ensured that the token stream

retained enough uniqueness to make the SI values distinguishable. If the addition of Soundex had had

no impact, I would have expected to see all of the Method 43 scores (i.e., A, B, C and D) to be the closer.

6.1 Final Observations
A few final observations:

 The same method for calculating the SI must be used across the entire corpus of documents in

order for the numbers to properly interact. This seems intuitively obvious and shouldn’t be a

surprise; the same limitation exists in cryptography. You can’t compare MD5 hashes and SHA-1

hashes for the same document and expect them to match.

M. Scott Roth / Armedia 17

 This experiment was conducted on a very small set of documents. To really determine the

robustness of the process and the theory, it should be run against a much larger collection of

documents.

 The most frequently occurring method in the top 104 results was method 9 (including method 9,

29, and 49 – the sum of the highest 200 shingles) at 23 times. The second most frequently

occurring method was 3 (3, 23, 43 – sum of 0 mod 25) at 21 times, and then method 7 (7, 27, 47

– sum of the lowest value 200 shingles) at 21 times. Using the lowest valued shingles (and by

extension, the highest valued shingles) is discussed in [14]. Figure 3 depicts the frequency of

methods in the top 104 results.

Figure 3 Most Frequent Used Methods in Top 104 Results

 I find it curious that no one has pursued this idea further than [9]. Perhaps they have proven

that it is mathematically unsound and there is no reason to pursue it further? Regardless, I have

proven that this is relatively inexpensive (effort-, processing- and storage-wise) and a useful way

to detect similar or nearly duplicate documents in a corpus.

With regard to the original question that spurred this endeavor: yes, it is possible to determine if

similar documents exist in a repository. And yes, this determination can be made at the time of

ingestion (i.e., checkin). There are likely numerous ways this could be accomplished (e.g., the

Lucene MoreLikeThis API); however, using the Similarity Index as described here is a quick and

easy way to make a better than fair assessment of content, without the need for a full-text index or

database.

6.2 Post Script
I created a relatively simple Aspect in Document 6.6 (by repurposing some of the code from the

experiment) that generated SI values. I imported my document collection in to Documentum as basic

dm_documents and applied the Aspect to each document in the collection. I then endeavored to

0

2

4

6

8

10

12

14

49 27 29 47 3 43 25 35 45 41 21 23 1 4 44 5 30

Method Frequency in Top 104

M. Scott Roth / Armedia 18

identify similar documents using DQL. I learned that DQL doesn’t work well with large numbers, but I

was able to find similar documents using a query.

My approach was to find the SI value of my current document, determine what 30% of that value was,

and then use that percentage to establish an upper and lower bound for the query. Something like this:

SELECT r_object_id

FROM dm_document

WHERE si_aspect.value > [lower bound].0

AND si_aspect.value < [upper bound].0

To force DQL to process the upper and lower bounds as double precision variables, I had to tack a “0”

onto the end of each boundary number.

This DQL produced results in line with the experiment.

M. Scott Roth / Armedia 19

7 Selected Bibliography
Following is a selection of research papers, books, and articles I read to formulate and execute this

experiment. If this topic, this paper, or the techniques it discussed are of interest to you, these citations

will interest you too. Put on your thinking caps, some of this stuff is really heady.

1. Broder, A., On the resemblance and containment of documents, 1997,

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/broder97resemblance.pdf.

2. Rabin, M., Fingerprinting by Random Polynomial, 1981, http://www.xmailserver.org/rabin.pdf.

3. Elbegbayan, N., Winnowing, a Document Fingerprinting Algorithm, 2005,

http://www.ida.liu.se/~TDDC03/oldprojects/2005/final-projects/prj10.pdf.

4. Schleimer, Wilkerson, and Aiken, Winnowing: Local Algorithms for Document Fingerprinting,

2003, http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf.

5. Rajaraman and Ullman, Mining of Massive Datasets, 2010,

http://infolab.stanford.edu/~ullman/mmds/book.pdf.

6. Broder, A., Algorithms for duplicate documents, 2005,

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/Princeton.pdf.

7. Johnson, A., How MoreLikeThis Works in Lucene, 2008,

http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-lucene/.

8. Preneel, B., Analysis and Design of Cryptographic Hash Functions, 2003,

http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf.

9. Cooper, Coden, and Brown, Detecting Similar Documents Using Salient Terms, 2002,

http://www.labsoftware.com/flahdo/Papers/CIKMDuplicates.pdf.

10. Huston, C., Fingerprinting Jar Files Using Winnowing, 2009,

http://www.catehuston.com/files/fingerprinting%20jar%20files%20using%20winnowing.pdf.

11. Dig, Comertoglu, Marinov, and Johnson, Automatic Detection of Refactorings for Libraries and

Frameworks, 2005,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.654&rep=rep1&type=pdf.

12. Nikkhoo, H., The Impact of Near-Duplicate Documents on Information Retrieval Evaluation,

2010, http://uwspace.uwaterloo.ca/bitstream/10012/5750/1/Khoshdel%20Nikkhoo_Hani.pdf.

13. Heintze, N., Scalable Document Fingerprinting (Extended Abstract), 1996,

http://www.cs.cmu.edu/afs/cs/user/nch/www/koala/main.html.

14. Broder, Glassman, Manasse, and Zweig, Syntactic Clustering of the Web, 1997,

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf.

15. Wikipedia, Soundex, 2011, http://en.wikipedia.org/wiki/Soundex.

16. Wikipedia, Cryptographic Hash Functions, 2011,

http://en.wikipedia.org/wiki/Cryptographic_hash.

17. Yang, Peng and Zeng, The Design and Implementation of Document Similarity Detecting Systems,

2010, http://www.joics.com/publishedpapers/2010_7_3_739_745.pdf.

18. Saladjiev, Way to find documents with similar content, March 2011,

https://community.emc.com/message/536386#536386.

19. com.planetj.math.rabinhash.RabinHashFunction64, http://rabinhash.sourceforge.net/.

http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/broder97resemblance.pdf
http://www.xmailserver.org/rabin.pdf
http://www.ida.liu.se/~TDDC03/oldprojects/2005/final-projects/prj10.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://www.cs.princeton.edu/courses/archive/spr05/cos598E/bib/Princeton.pdf
http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-lucene/
http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf
http://www.labsoftware.com/flahdo/Papers/CIKMDuplicates.pdf
http://www.catehuston.com/files/fingerprinting%20jar%20files%20using%20winnowing.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.654&rep=rep1&type=pdf
http://uwspace.uwaterloo.ca/bitstream/10012/5750/1/Khoshdel%20Nikkhoo_Hani.pdf
http://www.cs.cmu.edu/afs/cs/user/nch/www/koala/main.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf
http://en.wikipedia.org/wiki/Soundex
http://en.wikipedia.org/wiki/Cryptographic_hash
http://www.joics.com/publishedpapers/2010_7_3_739_745.pdf
https://community.emc.com/message/536386#536386
http://rabinhash.sourceforge.net/

M. Scott Roth / Armedia 20

20. Knuth, D., Soundex Algorithm, http://www.java-forums.org/java-lang/7438-soundex-algorithm-

implementation-java.html.

21. Wikipedia, Java hashCode(), 2011, http://en.wikipedia.org/wiki/java_hashCode().

22. Garcia, Mi Islita website, http://www.miislita.com/information-retrieval-tutorial/information-

retrieval-tutorials.html.

23. Ye, Wen, and Ma, A systematic study on parameter correlations in large scale duplicate

document detection, 2007,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.3748&rep=rep1&type=pdf

<SDG><

http://www.java-forums.org/java-lang/7438-soundex-algorithm-implementation-java.html
http://www.java-forums.org/java-lang/7438-soundex-algorithm-implementation-java.html
http://en.wikipedia.org/wiki/java_hashCode()
http://www.miislita.com/information-retrieval-tutorial/information-retrieval-tutorials.html
http://www.miislita.com/information-retrieval-tutorial/information-retrieval-tutorials.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.3748&rep=rep1&type=pdf

