
Content Migration
Approaches for
Documentum

M. Scott Roth
Content Management Solutions Architect for

Government Solutions

September 20, 2008

Content Migration Approaches for Documentum

2

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Table of Contents

Introduction ... 3
Preparation .. 4
Scenario 1 ... 5
Scenario 2 ... 7
Scenario 3 ... 10
Scenario 4 ... 13
Summary ... 19
References and Resources .. 21
About Flatirons Solutions ... 23
About the Author .. 23

Content Migration Approaches for Documentum

3

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Introduction
Recently, there has been a lot of discussion about content migration1; in the
blogosphere, on the message boards, and in my company. Some of it may be
fueled by the push to upgrade everyone to D6/6.5. Or, perhaps, everyone is
virtualizing their infrastructure and needs to move Docbases and servers to
VMware. Whatever the reason, everyone seems to be talking about it, including
me.

After doing a quick survey of the projects we are pursuing at Flatirons Solutions,
I came to the realization that a large portion of them involve content migration
to some degree. The diversity of the projects and the degree to which content
migration was required started me thinking about how each project should
approach their migration needs. Some projects required the simplest of
approaches while other required “a big hammer.” The “big hammer” approach
would, of course, address the needs of the simple migration, but at too great a
cost. The converse was not true: the simple approach would not meet the
needs of the complex migrations. In an effort to best address the needs of each
project (i.e., cost, effort, time); I drew upon personal experiences and those of
colleagues to put together this brief overview of common approaches for
migrating content from one Documentum repository to another.
There are many reasons you might want to migrate content from one
Documentum repository to another2. Here are the four most common scenarios
I discovered in my survey of projects at Flatirons Solutions:

1. You need to migrate the Content Server to a more modern and powerful
hardware platform. To do so, you need to clone the Documentum
repository from the old platform to the new platform.

2. You need to migrate the Content Server to a different operating system
and hardware platform. However, you are keeping the database vendor
the same.

3. You need to migrate the Content Server to a new enterprise architecture.
This requires changing the Content Server’s hardware platform, the
operating system and database vendors.

4. You need to migrate the Content Server to a new hardware and database
platform. In the process, you need to implement a new doctype model
and patch up the metadata.

Table 1 summarizes the primary challenges presented by each of these
scenarios.

1 Content migration is the act of moving content objects (content files and metadata) from one Documentum
repository to another, while transforming or retaining the objects’ source metadata. This activity is often called
Extract, Translate and Load (ETL) in the database world.
2 There are plenty of reasons for wanting to migrate content from other content management systems into
Documentum also, but those scenarios are not the subject of this paper.

Content Migration Approaches for Documentum

4

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Table 1 - Summary of Migration Scenarios

Scenario Change
Hardware
Platform

Change
Operating

System

Change
Database
Vendor

Change
Object
Model

Scenario 1
Scenario 2
Scenario 3
Scenario 4

There are certainly many other reasons and scenarios for migrating content. As
illustrated by these scenarios—and perhaps by the ones missing from this list—
content migrations offer many challenges, and no two migrations are ever the
same. Therefore, a Documentum solution provider needs to be knowledgeable of
the many migration options available to him.

This paper offers an overview of migration scenarios paired with approaches,
tools and best practices for each. It was not designed to provide a
comprehensive approach for all migration scenarios. Rather, its intent is to
provide an overview of approaches for how you might meet the challenges
presented by each migration scenario. In the following pages, each of the
scenarios outlined above will be expanded upon to discuss inherent challenges
presented by each migration, and the best approach for meeting them.
Therefore, you will find the level of detail for each approach varies among
scenarios as the needs and challenges of each scenario vary. The end of this
paper presents a lengthy list of articles, books, blogs, and tools to consult for
further information.

Preparation
Before beginning any migration tasks, there are several preparatory things you
should do:

• Run housekeeping jobs – Run Documentum’s housekeeping jobs. Details
regarding these jobs can be found in the Seven Jobs Every Documentum
Developer Should Know and Run article referenced at the end of this
paper. Resolve any issues identified by the Consistency Checker. There is
no sense in migrating dirty data, unnecessary data or coping with
referential integrity issues during the migration.

• Fill out migration worksheet – Fill in all the data on the migration
worksheet (see reference at end of paper). This worksheet helps you plan
your migration, ensures you have documented all the necessary account
names and passwords, and estimate needed disk space. It is a little
dated, but still relevant and helpful.

• Verify connectivity and disk space – Verify that the connectivity among the
servers and other devices involved in the migration is adequate (i.e.,
bandwidth is sufficient to move large amounts of data) and that enough

Content Migration Approaches for Documentum

5

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

free disk space is available for the temporary storage needed during the
migration.

• Verify downtime – Verify that your planned downtime for the migration is
adequate and well advertised. You may want to do some testing by
copying large files across the network to gauge transfer rates. You should
also plan your migration during a time when it will impact your customer
the least. This usually means at night or over the weekend, but make
contingencies plans for if it takes longer and overlaps expected operational
hours.

• Practice – Practice the migration in a lab or VMware environment before
attempting the real thing. Practice often identifies unknown and
unexpected situations or problems. You know what they say about the
best laid plans of mice and men3.

After completing these preparatory activities, it is time to move on to addressing
your specific migration scenario.

Scenario 1
The first scenario is very simple: you have the Content Server, the database
server and the content files all on a homogeneous hardware platform. You need
to move the Content Server to a more modern, powerful and robust platform.
There is no need to change operating systems, hardware architecture, or Content
Server versions. All you really want to do is clone the existing Docbase to the
new hardware platform quickly and easily.

Challenge
The challenge in this scenario is how to make this migration quick, easy and
complete. You also want to do it with minimal monetary investment in software
tools.

Approach
Everyone’s instinctive first approach to this scenario will be to use Documentum’s
Dump and Load operations. Dump and Load have been around since the
beginning, but have received some criticism for not being user friendly or
reliable. Dump and Load serialize and de-serialize object content and metadata
as specified by a set of attributes on each Dump and Load object created in the
Docbase. For simple migrations this is an acceptable process. However, Dump
and Load have not kept up with the latest releases of Content Server and the
operations can miss several very important object types in the Docbase, for
example: workflow instances, doctypes without any instances, DocApps,
registered tables, aspects and objects under records retention. Be aware of
Dump and Load’s short comings before attempting a migration using them. See
the Content Server Administrator’s Guide for more details.

3 “Go often askew, and leave us nothing but grief and pain for promised joy!”, To A Mouse, Robert Burns, 1785.

Content Migration Approaches for Documentum

6

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Dump

The act of creating and saving a Dump object (dm_dump_record) in the
repository initiates the Dump process. The following steps outline the process
for creating and saving a Dump object using an API script.

• Perform the preparatory steps outlined in the Preparation section above to
make sure the Docbase is in prime condition for migration.

• Create a Documentum API script similar to the one following. This script
has been adapted from the script described in the Content Server
Administrator’s Guide and will Dump the entire Docbase. There are many
options available for the Dump operation, consult the guide for details.

create,c,dm_dump_record
include the full path
set,c,l,file_name
c:\temp\dumpfile.out
dump entire Docbase
set,c,l,dump_operation
full_docbase_dump
append,c,l,dump_parameter
include content
set,c,l,include_content
T
compress content
append,c,l,dump_parameter
compress_content=T
save,c,l
check for dump errors
getmessage,c

• Run this script using the IAPI32 command line utility.
• It is also important to note that Dump will not dump content in the

/System or /Temp cabinets, the repository owner user object or the docu
group.

Load

Like the Dump operation, creating and saving a Load object (dm_load_record)
initiates the Load operation.

• Run the Preload utility. This utility will examine the dump file and the
target repository and identify objects that must be created in the target
Docbase before loading the dump file.

• Run the DQL script created by the Preload utility to create the missing
objects.

• To start the Load operation, create a Documentum API script similar to the
one following. This script has been adapted from the script described in
Content Server Administrator’s Guide.

create,c,dm_load_record
include the full path
set,c,l,file_name
c:\temp\dumpfile.out

Content Migration Approaches for Documentum

7

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

save,c,l
check for load errors
getmessage,c

• Run this script using the IAPI32 command line utility.
• Remember, Load will not load content for /System or /Temp cabinets, the

repository owner user object or the docu group. See the Content Server
Administrator’s Guide for more details.

• It is also important to note that the target Docbase cannot have the same
Docbase ID or Docbase name as the source Docbase.

• Finally, run the Consistency Checker and State of the Docbase jobs (see
the Seven Jobs Every Documentum Developer Should Know and Run
article referenced at the end of this paper for details). Resolve any issues
identified by the Consistency Checker. Compare the State of the Docbase
report generated during your preparatory steps with the one generated in
the new environment. This comparison should be a good indicator of the
thoroughness of your migration.

The bottom line with this approach is that it is simple and utilizes built-in
capabilities and tools. However, there are some potentially serious drawbacks to
using the Dump and Load approach. Make sure you understand the limitations
and practice your migration.

Alternate Approach
Alternatively, if the migration described by this scenario is really just a
virtualization of your existing Content Server, then a simpler approach is to use
VMware’s Converter utility. The Converter utility will create an exact copy of a
physical system in a VMware image. See the VMware Converter reference at the
end of the paper.

Tools
The software tools used in this scenario are:

• %DM_HOME%/bin/IAPI32�
• %DM_HOME%/bin/PreLoad�
• VMware Converter (see reference at end of this paper).

Scenario 2
In this scenario, you need to migrate the Content Server to a more modern,
powerful and robust hardware platform and change the operating system. The
database will remain Oracle. On the surface, changing the OS might seem like a
big deal, but it really isn’t. A change in the Content Server OS would be
important if our migration tools were OS-specific, but they aren’t. Therefore, the
OS changing is a bit of a red herring in this scenario.

Content Migration Approaches for Documentum

8

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Ignoring the OS factor then, this scenario reads much like Scenario 1.
Therefore, the approach suggested in Scenario 1 is certainly valid. However, for
interest and variety, assume the Docbase is too complicated to be migrated
using Dump and Load.

Challenge
The challenge in this scenario is to create an exact copy of a Docbase on an
entirely different hardware and operating system platform. The tools and
approach must, therefore, be cross-platform.

Approach
The approach described here works under the covers of the Content Server at
the database and content store levels. Essentially we are going to clone the
database and slip it in under the new installation of the Content Server on the
target platform. We will then move the content stores to the new platform thus
creating an exact copy of the repository on the new hardware and OS platform.
For the sake of our scenario, assume the source Docbase is on Windows and the
new Docbase will run on Solaris.

The details of this approach are described in the Documentum presentation,
Upgrading to Documentum Server 5.1. Though some of the details of that
presentation are dated, the overall approach is still valid. A reference to this
presentation can be found at the end of the paper.

Database Cloning
Begin by creating an exact copy of the Content Server’s database (i.e., a clone).

• Perform the preparatory steps outlined in the Preparation section above to
make sure the Docbase is in prime condition for migration.

• Install the exact same version of the database and the Content Server on
the target environment. If this migration requires an upgrade also, make
sure you perform the upgrade such that you always migrate content to the
exact same version of the Content Server. This means you perform the
upgrade before or after migrating the content.

• When installing the Content Server in the target environment, use the
same installation owner as the source Content Server and create a
Docbase with the exact same name, ID, and owner as the source Docbase.

• Shutdown the target Docbase.
• Logon to the target database and drop all of the tables and views in the

Docbase schema. You can drop the existing database tables using the
dm_DeleteTableSpace.sql script in the %DOCUMENTUM%/dba/config/
<repository_name> directory.

Content Migration Approaches for Documentum

9

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

• Shutdown the source Docbase and export the database tables and views
using the Oracle exp command line utility.4 Consult the Oracle
documentation for syntax and options for the exp and imp commands.

• Import the database tables and views into the target database using the
Oracle imp command.

Copy Content
Copy all of the content from the source system to the target system. This can be
accomplished in a number of ways: Microsoft Explorer, Samba, XCopy, FTP, ZIP,
TAR, cp, etc. There are two key things to remember with this copy:

o Make sure you copy all of the content storage areas and retain the file
ownership and permissions;

o The path on the target system must be exactly the same as the path on
the source system.

If either of these two properties change, additional OS and database changes
must be made. See the Upgrading to Documentum Server 5.1 and/or The
Content Server Installation Guide document for details.

Reconfigure Target Server

• Verify that the contents of the server.ini and the dfc.properties files
on the target system match those on the source system.

• Start the target Docbase.
• Update the hostname on the target system using DQL:

o update dm_mount_point_s set host_name = '<target server
name>';

o update dm_server_config_s set r_host_name = '<target
server name>';

• Update the job targets on the target system using DQL:
o update dm_job_s set target_server = '<target server

name>' where target_server = '<source server name>';
• Invalidate the views on the target system so they will be rebuilt, using

DQL:
o update dm_type_s set views_valid = 0;

• Finally, run the Consistency Checker and State of the Docbase jobs (see
the Seven Jobs Every Documentum Developer Should Know and Run
article referenced at the end of this paper for details). Resolve any issues
identified by the Consistency Checker. Compare the State of the Docbase
report generated during your preparatory steps with the one generated in
the new environment. This comparison should be a good indicator of the
thoroughness of your migration.

This approach involves a little database and file system trickery to achieve its
goal. Other than sufficient attention to detail and enough storage space to

4 If your migration is from Windows/SQL Server to Windows/SQL Server (as opposed to the Windows/Oracle –
Unix/Oracle in this example), you can use the SQL Server Copy Database Wizard, or create a backup of the
database to achieve the same purpose.

Content Migration Approaches for Documentum

10

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

accommodate the temporary storage of the export tables, this approach is
straightforward. The fact that the OS changes from the source to the target
Docbase is completely nullified by moving the database tables via vendor-
provided tools, and copying the file stores.

Alternate Approach
As mentioned earlier, Dump and Load may be a valid alternate approach
for this scenario depending upon the complexity of the Docbase. In
addition, any of the other approaches mentioned in this paper would be
equally valid as well.

Tools
The tools needed to implement this approach are all native to their
respective database vendors:

• %ORACLE_HOME%/bin/exp
• %ORACLE_HOME%/bin/imp
• TAR
• FTP

Scenario 3
In the third scenario you are changing three major variables in the repository
configuration: the hardware platform, the operating system for the Content
Server, and the database vendor. This scenario is the most common and can
prove to be very challenging because it has so many variables.

The approach to this scenario must neutralize as many of these variables as
possible. In the previous scenario, we overcame some of these challenges by
using database vendor tools, but in this scenario we don’t have that luxury
because the database differs between the source and target environments. We
have already established that Dump and Load is not the best approach for
complex Docbases, so that option is eliminated also. It should also be apparent
that we can’t use the Oracle exp/imp tools to migrate data to/from a Microsoft
SQL Server database. The best way I know to neutralize these challenges is to
work directly through the Content Server API. The Content Server then shields
you from the details of implementing on different hardware, OSes and
databases.

Challenge
The challenge in this scenario really lies with changing the database vendor
although changing the hardware platform and OS add drama to the scenario.
Unlike the previous scenarios where you could export the database and re-import
it in the new environment, you cannot easily clone a database among different
vendors.

Content Migration Approaches for Documentum

11

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Approach
Unlike the Docbase cloning approach that treated the repository metadata and
content separately, this approach addresses them both concurrently. The
recommended approach in this situation is to use the Documentum Application
Builder (DAB) to build data DocApps to transport the repository content across
the hardware/OS/database transom to the target environment. The data
DocApps bundle object metadata and content into environment-neutral archives
that can be easily installed in the target environment using the Documentum
Application Installer (DAI).

Create Data DocApps
Begin by creating an initial DocApp that contains all of the repository’s
customizations (e.g., doctypes, workflows, etc.). Then create DocApps that
contain the actual content. The steps for this approach are outlined below.

• Perform the preparatory steps outlined in the Preparation section above to
make sure the Docbase is in prime condition for migration.

• Analyze the content. Determine how best to carve up the content in the
Docbase so that each resulting DocApp is between 5 – 8 GB in size.
Experience shows that this size DocApp is the maximum capacity for DAI.
Don’t be fooled by the apparent simplicity of this analysis; this analysis is
key to making this approach work.

• Create an initial DocApp that contains all of the repository’s custom
doctypes, permission sets, workflow templates, lifecycles, methods, etc.,
but no content.

o NOTE: users, groups and ACLs cannot be included in a DocApp.
You will need to recreate these objects manually (or with a script)
on your target Docbase.

• If you have never created a DocApp that contains objects already resident
in a Docbase, you may want to consult the DAB documentation. Briefly,
here are the steps:

o Create a new DocApp
o Choose Insert->Objects From Docbase->Object Type from the

menu. Select object type from the Docbase.
o Repeat for all custom object types in the Docbase.
o Once everything has been added to your initial DocApp, choose

DocApp->Set Installation Options and ensure that all of the
objects are set to Overwrite in the Target Docbase.

o Choose DocApp->Checkin and save the DocApp in the Docbase.
o Finally, choose DocApp->Create DocApp Archive from the menu

to save the DocApp to the local file system.
• After creating your initial DocApp, begin creating data DocApps in the

same manner. Insert cabinets, folders and objects that contain content in
accordance to the content analysis you performed. Don’t forget to include
doctypes with the data DocApps, otherwise DAB will not include the
content.

Content Migration Approaches for Documentum

12

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

• Checkin the DocApps, set the installation options to include content, and
export the DocApps by choosing DocApp->Create DocApp Archive.

• Repeat until you have created DocApps for all the content in the Docbase.
• It is likely that DAB will fail with an Out of Memory Error when you try to

create large data DocApp archives. You will need to adjust (maximize) the
amount of memory allocated to the Java heap, and the size of your
DocApp to find the right balance. In order to give the maximum heap
space to the JVM, run DAB on a workstation with 4GB of RAM. For details
on adjusting the JVM heap, see the references at the end of this paper.

Install Data DocApps
• Create users, groups and ACLs in the target Docbase either manually or

using a script.
• Start the Documentum Application Installer (DAI) and login as the

Docbase owner.
• Using the DAI screen controls, open the initial DocApp and install it.

Watch the log messages to ensure the installation was successful.
• After the initial DocApp is loaded, systematically install all of the data

DocApps.
• If you are installing from a different workstation than the one on which

you created the DocApps, you will need to maximize the amount of
memory allocated to the Java heap on this machine too. For details on
adjusting the JVM heap, see the references at the end of this paper.5

• An odd side effect of using data DocApps, is that all of the content will be
installed in the /System/Applications/<DocApp Name> folder. You will
need to move it to its proper cabinet when the installation is completed.

• Finally, run the Consistency Checker and State of the Docbase jobs (see
the Seven Jobs Every Documentum Developer Should Know and Run
article referenced at the end of this paper for details). Resolve any issues
identified by the Consistency Checker. Compare the State of the Docbase
report generated during your preparatory steps with the one generated in
the new environment. This comparison should be a good indicator of the
thoroughness of your migration. The good news is, if you missed
something, simply go back and create another DocApp to capture the
missing content.

Using data DocApps to migrate content is a great approach, which neutralizes all
of the environment variables (platform, OS and database) by operating
completely within the Documentum framework and API. The drawbacks are that
you can’t selectively migrate data based upon doctype, only based upon its
location in the repository (e.g., cabinets or folders), and the content ends up in
the DocApp’s application folder. Another drawback is the inherent instability of
DAB and DAI and finding the threshold at which the JVM runs out of memory.

5 You can also run DAI from the command line and control the Java heap with –Xms and –Xmx arguments. The
command looks something like this: java -Xms256mb -Xmx256mb
com.documentum.ApplicationInstall. DfAppInstaller -d <docbase> -n <user> -p
<password> -a <docapp> -l <log file> -f <properties file>.

Content Migration Approaches for Documentum

13

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Alternate Approaches
The only viable alternative for this scenario is a custom tool or one of the third
part tools described in the next scenario.

Tools
• Documentum Application Builder
• Documentum Application Installer
• Webtop (to move content after installation)

Scenario 4
The final scenario to consider is one that contains a little bit of everything. We
must deal with the “three variables” discussed in Scenario 3, but in addition, the
content of the source Docbase must be split into two different doctypes based
upon a business rule, the object name will become a combination of other
metadata values, and the title must be trimmed.

Specifically, the original Docbase contains standard operating procedures (SOP)
for a small manufacturing company. Over the course of time, these SOPs have
taken on two distinctly different applications: one for the manufacturing of
widgets, the other for running the business. Unfortunately, the current object
model does not distinguish between the two, so users have resorted to giving the
SOPs creative titles to distinguish them. SOPs related to the manufacturing of
widgets have a title that starts with “M-“, while SOPs related to the business
have a title that start with “B-“. During the migration, you must distinguish
between the manufacturing SOPs and the business SOPs and create man_sop
objects or bus_sop objects, respectively. You must also store them in separate
folders in the SOP cabinet.

As for the metadata, the following metadata mapping rules need to be
implemented during the migration:

• The object_name, which could contain anything in the source repository,
must be the concatenation of “M-“ or “B-“ (for manufacturing or business
depending upon which SOP type it is), the SOP number and the title of the
SOP. For example: “M-0001-Extrusion Molds” or “B-021-Electronic Funds
Transfers”.

• The title should have the leading “M-“ or “B-“ removed if it has one.

Challenge
The challenges in this scenario are to identify, segregate and move content
based upon specific business rules, and apply metadata conversion and mapping
rules as the content is migrated from one repository to another. The hardware
platform, OS and databases are also different between the source and target
environments.

Content Migration Approaches for Documentum

14

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Approach
The complexity of this migration demands a custom or 3rd party tool. Although
custom written migration tools are always an option (and fun to write!), their
cost and general applicability from one migration to another is usually limiting,
and therefore will not be considered here. Instead, this approach will focus on
the use of 3rd party tools. There are a number of 3rd party tools available to
accomplish this kind of migration; Table 2 contains a list of several.

Table 2 – 3rd Party Migration Tools

Tool Vendor URL

OpenMigrate TSG www.tsgrp.com
DocLoader/Solo McLaren Software www.mclarensoftware.com
DIXI6 Blue Fish Group www.bluefishgroup.com
Buldoser Crown Partners www.crownpartners.com
DocMigrator/
SysMigrator

Generis www.generiscorp.us

migration-center fme AG www.migration-center.de
Q-Transfer Impact Systems www.impactinfosys.com
TadsBits Theodore Watson www.tadsbits.com

For this scenario I chose to use OpenMigrate, an open source migration tool
created and maintained by the Technology Services Group (TSG). Why?
Because it is an open source/free resource that is available to everyone. Most of
the other tools listed in Table 2 are cost prohibitive for a small migration of this
sort.

OpenMigrate (OM) is a Java application framework built using the Spring
Framework and Hibernate. OM contains a migration engine that handles the
logistics of moving generic migration nodes from a source to a target. The
migration nodes are defined using an interface that abstracts the specific
implementation from the engine. The source and target are abstracted via
adaptors that plug into the framework. Out-of-the-box, OM contains source and
target adaptors for Documentum and the file system.

OM relies heavily on a lot of XML configuration files that are injected into the
framework at various times and override each other at various levels. This has
many advantages and disadvantages: it makes the tool very flexible and allows
non-programmers to configure complex migrations by simply writing or tweaking
XML files. The disadvantage is that these XML files are not for the faint of heart.
A thorough understanding of the OM architecture and its features is a must for
writing usable configuration files. I found the documentation for OM and the
config files a little sparse. After obtaining the source code from TSG, setting up
an Eclipse project and running the sample projects from the IDE, the

6 Shortly after completing the research for this article, Blue Fish decommissioned DIXI and replaced it with their
new content migration product, Migration Work Bench.

Content Migration Approaches for Documentum

15

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

configuration was a little clearer, but still not for the faint of heart. If you choose
to use OM, I suggest contacting TSG for help in getting things setup and your
project started.

There are three primary XML configuration files that drive the migration process
for this scenario. They are:

• app-ctx.xml—this is the primary configuration file. In it you specify the
migration source adaptor, target adaptor and the process pipeline.
OpenMigrate comes with an application context file for Documentum-to-
Documentum migrations. It shouldn’t require any changes for our
migration.

• config.xml—this file contains additional configuration information and is
generally only necessary for the Spring Framework and the Jakarta
Commons configuration. In our migration, it simply points to the
configuration details file.

• config-details.xml—this file contains target and source-specific
mapping information such as doctypes, attribute names, attribute values,
etc.

There is also a properties file:

• ctx-placeholders.properties – this file holds configuration information
for the queue populator (a DQL query used to select qualified objects to
migrate) and repository access (i.e., login information). The properties
defined here are injected into the app-ctx.xml file when needed.

config-details.xml
The configuration details file is where all the interesting things in this migration
happen. The first two sections simply indicate which doctypes you will deal with
in this migration. From the source repository, you will process all sop_docs, and
in the target repository man_sops and bus_sops.

<config>
 <source-dctm-main>
 <objects>
 <object>
 <description>Settings for sop</description>
 <criteria>
 <attribute name="om_object_type"
 value="sop_doc" type=
 "java.lang.String"/>
 </criteria>
 <renditions formats=".*"/>
 <versions values=".*"/>
 </object>
 </objects>
 </source-dctm-main>

 <target-dctm-main>

Content Migration Approaches for Documentum

16

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 <objects>
 <object>
 <description>Setting for man and bus sop
 </description>
 <criteria>
 <attribute name="om_object_type"
 value="man_sop | bus_sop"

type="java.lang.String"/>
 </criteria>
 </object>
 </objects>
 </target-dctm-main>

Next, we map the business SOPs to the bus_sop type and the manufacturing
SOPs to the man_sop type. To accomplish this, we use a simple regular
expression in the attribute.value criteria. If the SOP’s title begins with B-, it
is assumed to be a business SOP. If the title begins with M- it is assumed to be
a manufacturing SOP.

<mappings>
<type-mapping-bus>

 <name>bus sop type mapping</name>
 <description>mapping for bus sop type</description>
 <mapping-criteria>
 <attribute name="om_object_type" value="sop_doc"
 type="java.lang.String"/>
 <attribute name="title" value="^B-.*"

type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="om_object_type"
 type="java.lang.String">
 <value val="bus_sop"/>
 </attribute-mapping>
 </attribute-mappings>

</type-mapping-bus>

<type-mapping-man>

 <name>man sop type mapping</name>
 <description>mapping for man sop type</description>
 <mapping-criteria>
 <attribute name="om_object_type" value="sop_doc"
 type="java.lang.String"/>
 <attribute name="title" value="^M-.*"

type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="om_object_type"
 type="java.lang.String">
 <value val="man_sop"/>
 </attribute-mapping>
 </attribute-mappings>

</type-mapping-bus>

Content Migration Approaches for Documentum

17

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

The next section of the config-details.xml file sets up the rules to make sure
the manufacturing and business SOPs are stored in the appropriate folders when
they are migrated.

<folder-mapping-man>
 <name>man sop folder mapping</name>
 <description>mapping for man sop folders</description>
 <mapping-criteria>
 <attribute name="om_object_type" value="man_sop"
 type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="om_folder"
 type="java.lang.String">
 <value val="/SOPs/Manufacturing"/>
 </attribute-mapping>
 </attribute-mappings>

</folder-mapping-man>

<folder-mapping-bus>
 <name>bus sop folder mapping</name>
 <description>mapping for bus sop folders</description>
 <mapping-criteria>
 <attribute name="om_object_type" value="bus_sop"
 type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="om_folder"
 type="java.lang.String">
 <value val="/SOPs/Business"/>
 </attribute-mapping>
 </attribute-mappings>

</folder-mapping-bus>

This final section sets up the mapping rules for the title and object_name
attributes. The first section removes the M- and the B- from the beginning of the
title, if they exist, using the built-in ReplaceChars() function. The final two
sections construct the object’s name by concatenating the SOP’s number and
title with the M- or B- indicator.

<default-mapping>
 <name>default sop mapping</name>
 <description>General Mapping for sops</description>
 <mapping-criteria>
 <attribute name="om_object_type"

value="man_sop | bus_sop"
 type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="title"
 type="java.lang.String">
 <value val=

"${XReplaceChars~title~/M-|B-///"/>
 </attribute-mapping>

Content Migration Approaches for Documentum

18

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

<mapping-criteria>
 <attribute name="om_object_type"

value="man_sop"
 type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="object_name"
 type="java.lang.String">
 <value val="M-${sop_number}-${title}"/>
 </attribute-mapping>

<mapping-criteria>
 <attribute name="om_object_type"

value="bus_sop"
 type="java.lang.String"/>
 </mapping-criteria>
 <attribute-mappings>
 <attribute-mapping attr="object_name"
 type="java.lang.String">
 <value val="B-${sop_number}-${title}"/>
 </attribute-mapping>

</default-mapping>
</mappings>

</config>

ctx-placeholders.properties
Make sure the source and target repositories are defined and login credentials
provided. Also, set up the query that will pump data into the queue. For this
scenario, the property looks like this:

#Queue Populator Query
queuepop.query=SELECT * FROM sop_doc

Migration
• Perform the preparatory steps outlined in the Preparation section above to

make sure the Docbase is in prime condition for migration.
• Run OpenMigrate using the configuration files described above. I found it

easiest to run OpenMigrate using the source code in Eclipse. However, it
can also be run using the provided batch file:

>OpenMigrateCL.bat -config app-ctx.xml

• Run the Consistency Checker and State of the Docbase jobs (see the
Seven Jobs Every Documentum Developer Should Know and Run article
referenced at the end of this paper for details). Compare the State of the
Docbase report generated during your preparatory steps with the one
generated in the new environment. This comparison should be a good
indicator of the thoroughness of your migration. Of course, in this
scenario the before and after Docbases are radically different, so you may
want to employ some other quality control methodology.

Content Migration Approaches for Documentum

19

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

OpenMigrate is a fantastic open source ETL tool for Documentum. The price is
obviously right, and with a little effort and trial and error, the configuration isn’t
too daunting. It is also possible to write Java plugins for the framework if you
need additional functionality that cannot be achieved with the configuration files
and built-in transformers. The only drawback, again, is the lack of thorough
documentation and tutorials, though the sample projects are very helpful.

Tools
• OpenMigrate

Summary
Many of the approaches presented here will work for many other scenarios in
addition to the one for which it was presented. I associated each approach with
the scenario where it made the most sense and provided the most benefit. Table
3 contains a summary of each approach’s applicability to each of the scenarios
described in this paper. The 3rd party tools that are truly generic ETL tools are
applicable to all of the scenarios. The question that must be answered then is:
Is the tool worth the expense or can an alternate approach work just as well? If
an alternate approach is suitable, then I hope I have provided you with enough
information to get you headed in the right direction.

Table 3 - Summary of Approaches vs. Scenarios

Approach Scenario 1 Scenario 2 Scenario 3 Scenario 4
Dump & Load � � � �

VMware
Converter

� � � �

Database
Cloning

� � � �

Data DocApps � � � �

3rd Party
Tools

� � � �

As I stated earlier, no two migrations are ever the same, they all have unique
requirements and nuances, and this paper has not tried to address them all. For
example, some additional challenges you might face in your migration are:

• How do you migrate content (and metadata) from another content
management system to Documentum?

• How do you bulk importing content from a file system to Documentum?
• What happens if you encounter an unexpected problem half way through

the migration? How do you roll it back?
• How do you best deal with content that accumulates in the source system

during the migration?

Content Migration Approaches for Documentum

20

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

The answer to most of these questions is to use a 3rd party tool designed for
versatility with the necessary safeguards to roll back mistakes. As I was
finishing this paper, I learned about a new approach and tool for content
migration from the Blue Fish Group called Agile Migration and the Migration
Workbench, respectively. This approach and new tool address these problems
(and many others). My experience with the tool has been very positive.

In closing, I hope this paper has given you some direction, some insight and
some ideas, so as you face a content migration challenge—and you will—you feel
well versed in the approaches and tools available to you.

Please drop me a note and let me know what you think about this paper and the
ideas it contains: scott.roth@flatironssolutions.com.

Thanks to Todd Pierzina at TSG for all of his help with OpenMigrate, and to all
the Flatirons Solutions engineers who knowingly and unknowingly contributed to
this paper!

Content Migration Approaches for Documentum

21

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

References and Resources
The techniques discussed in this paper were developed and tested using
Documentum 6.0.

Here are some links and references to resources cited, mentioned or otherwise
consulted in this paper.

Blogs
• Documentum for Dummies: http://d4d2.com/?cat=55
• Ask Johnny!: http://johnnygee.wordpress.com/?s=migration
• Word of Pie: http://wordofpie.wordpress.com/?s=migration

Articles
• Seven Jobs Every Documentum Developer Should Know and Use,

http://developer.emc.com/developer/edn_redirect_secure.htm?redirectUR
L=http://developer.emc.com/developer/Articles/SevenDCTMJobs.pdf

• Content Migration: Seven Steps to Success,
http://www.vamosa.com/content_migration_seven_steps_to_success.pdf

• Technical Challenges Faced During Content Migrations,
http://www.bluefishgroup.com/library/2007/technical-challenges-faced-
during-content-migrations/

• Common Content Migration Scenarios,
http://www.bluefishgroup.com/library/2007/common-migration-scenarios/

• Agile Migrations – A Revolutionary Approach to Content Migrations,
http://www.bluefishgroup.com/content-migrations/agile-migrations.php

Websites
• JVM heap: http://javahowto.blogspot.com/2006/06/6-common-errors-in-

setting-java-heap.html
• Control Panel: http://forums.java.net/jive/thread.jspa?threadID=1292
• Oracle FAQ: http://www.orafaq.com/wiki/Import_Export_FAQ

EMC Developer Site/PowerLink
• Developer Site Migration section:

http://developer.emc.com/developer/migration.htm
• Upgrading to Content Server 5.1:

http://developer.emc.com/developer/downloads/MigrationUpgradingToSer
ver5.pdf

• Migration Worksheet:
http://developer.emc.com/developer/downloads/TemplateSectionSamples.
zip

• Documentum Migration/Upgrade Forum:
https://forums.emc.com/nsepn/webapps/xpsgggfs31465mnldcpq1454356
2/forums/forum.jspa?forumID=4

Content Migration Approaches for Documentum

22

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

• https://forums.emc.com/nsepn/webapps/xpsgggfs31465mnldcpq1454356
2/forums/thread.jspa?tstart=0&threadID=56686

Documentum Documentation
• Web Content Management Best Practices: WCM Custom DocApp

Migration, v2.0, 9/7/2004. (Contact EMC Consulting for a copy of this
paper).

• Documentum Content Server Administration Guide, v6, 2007.
• Documentum Content Server Installation Guide, v6, 2007.
• Documentum Application Builder User Guide, v5.3, March 2005.

Books
• A Beginner’s Guide to Developing Documentum Desktop Applications, M.

Scott Roth, 2005, ISBN: 0-595-33968-9

Tools
• OpenMigrate: http://www.tsgrp.com/Open_Source/OpenMigrate/open-

migrate.jsp
• OpenMigrate demo video:

http://tsgrp.com/multimedia/MillenniaGroup_TSG/MillenniaGroup_TSG.ht
ml

• TadsBits: http://www.tadsbits.com
• VMware Converter: http://www.vmware.com/products/converter/
• DocLoader:

http://www.mclarensoftware.com/ms/products/Docloader_Promo.asp
• DIXI: http://www.bluefishgroup.com/content-migrations/dixi.php
• Buldozer:

http://software.emc.com/microsites/application_portfolio/collateral/data_s
heets/Crown_ds_BULDOSER.pdf

• DocMigrator/SysMigrator: http://generiscorp.us/migration_tools
• migration-center: http://fme.de/Product.178.0.html?&L=1
• Q-Transfer: http://www.impactinfosys.com/downloads/Q-

Transfer%20data%20sheet.pdf
• TadsBits: http://www.tadsbits.com/

Content Migration Approaches for Documentum

23

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

About Flatirons Solutions
Flatirons Solutions Corp., an Inc. 500 company, provides consulting, systems
integration, and systems & software engineering services to Fortune 500
companies and government agencies. A leading content management solutions
provider specializing in XML-based publishing and digital asset management,
Flatirons has provided enterprise-wide solutions in industries such as high
technology, aerospace, transportation, publishing, manufacturing, financial
services, insurance, media and entertainment, retail, and healthcare. Flatirons
Solutions also actively participates in both DITA and DocBook XML technical
committees. Established in 2001, Flatirons Solutions is a privately-held company
headquartered in Boulder, Colorado, with offices in Washington D.C. and Ft
Worth, TX. For more information visit Flatirons Solutions on the web at
http://www.FlatironsSolutions.com.

About the Author
M. Scott Roth is the content management solutions architect for Government
Solutions at Flatirons Solutions Corp. He is also the author of the book, A
Beginners Guide to Developing Documentum Desktop Applications, and the open
source Documentum command line client, DOCS.

<SDG><

Content Migration Approaches for Documentum

24

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

4747 Table Mesa Drive, Suite 200
Boulder, Colorado 80305

(303) 544-0514
info@FlatironsSolutions.com

www.FlatironsSolutions.com

