
Two Approaches for
Migrating Existing

Documentum Users,
Groups, ACLs and
Registered Tables

M. Scott Roth
And

Brian Yasaki

January 6, 2009

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

2

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Table of Contents

Introduction ... 3

Dump and Load .. 4

DFC and API Scripts .. 6

Conclusion.. 17

About Flatirons Solutions .. 18

About the Authors ... 18

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

3

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Introduction

In Scott’s previous article, Content Migration Approaches for Documentum, he
discussed several content migration strategies that can be employed to migrate
content from one Documentum repository to another. Each strategy had its

advantages and disadvantages, and appropriate operational scenarios. However,
none of these approaches specifically addressed a fundamental prerequisite

requirement for successfully and completely migrating content: users, groups,
ACLs and sometimes registered tables also need to be migrated.

In this article we specifically address how to migrate existing users, groups, ACLs
and registered tables so that regardless of how the content is migrated, you are

not faced with the administrative nightmare of reassign content to users after the
fact. Most migration tools and techniques do not migrate users, groups and
ACLs1, and none migrate the content of registered tables. However, we have

developed two simple solutions2 for migrating existing user, groups, ACLs – and
even the contents of registered tables.

The first approach uses Documentum’s built-in Dump and Load operations.

Usually, Dump and Load get a bad rap when discussing content migration
because of their many shortcomings. However, Dump and Load are excellent
solutions for migrating users, groups and ACLs. Dump and Load will even

migrate your registered table objects (dm_registered), but not the actual

content of the tables.

The second approach is to write a little DFC code to generate API scripts that

recreate users, groups and ACLs in the target repository. This approach is not so
much a migration as you usually think of one, but more of a recreation. We sort
of think of this approach as being like the transporter in Star Trek. Users are

disassembled from their current location (the source repository), stored in a
buffer (the API script), and then reconstituted in an entirely new environment

(the target repository). Using this approach, you can also migrate the content of
registered tables; we’ll show you how later in this article.

To set these two approaches into proper context, let us explain the situation we
faced when we developed them. A customer had an existing Documentum

environment with five years of content on a Windows/SQL Server platform. They
wanted to decommission this environment and re-establish their Documentum

repositories in a Unix/Oracle environment. To migrate the content we used a
commercial migration tool, but before we could do that, we had to establish the
user base in the Unix/Oracle environment. Thus these two approaches emerged.

1 It’s important to note that Documentum’s Application Builder does not let you include users,
groups and ACLs in a DocApp. Some commercial applications such as, Crown Partners’ Buldoser,

Generis’ DocMigrator/SysMigrator, and Impact Systems’ Q-Config all migrate users, groups and/or
ACLs to some degree.
2 These solutions were developed and tested on Documentum 4i and 5.3 SP5.

http://www.crownpartners.com/
http://www.generiscorp.us/
http://www.impactinfosys.com/

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

4

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Dump and Load
Using Dump and Load to migrate users, groups and ACLs turns out to be a really

straightforward approach and is, in fact, how Documentum ―migrates‖ these
objects among members of a federated repository system.

Dump

The Dump operation is initiated by creating and saving a Dump object

(dm_dump_record) in the repository. We usually create a small script in NotePad

to create this object, set the requisite attributes, and save the object, and then

run it in the IAPI32 command line utility. The following script is representative of
a script that will dump all users, groups, ACLs and registered table objects.

There are many options available for the Dump operation, consult the Content
Server Administrator’s Guide for more details.

create,c,dm_dump_record

fully qualified file name for the dump file

set,c,l,file_name

c:\temp\users_groups_acls_regtbls.dmp

set the user type to be dumped

append,c,l,type

dm_user

dump all users by supplying a predicate that is always true

append,c,l,predicate

1=1

set the group type to be dumped

append,c,l,type

dm_group

dump all groups by supplying a predicate that is always true

append,c,l,predicate

1=1

set the acl type to be dumped

append,c,l,type

dm_acl

dump all acls by supplying a predicate that is always true

append,c,l,predicate

1=1

set the registered table type to be dumped

append,c,l,type

dm_registered

dump all registered tables by supplying a predicate that is

always true

append,c,l,predicate

1=1

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

5

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

save the object – this starts the dump

save,c,l

check for dump errors

getmessage,c

Run this script using the IAPI32 command line utility or from the API editor in
the Documentum Administrator on the source repository.

Load

Move the dump file (c:\temp\users_groups_acls_regtbls.dmp) to the target

repository and Load it. Loading dump files is also performed by writing a small
API script. Like the Dump operation, the Load operation is initiated by creating

and saving a Load object (dm_load_record) in the repository. Again, there are

many options available for the Load operation, consult the Content Server

Administrator’s Guide for more details.

create,c,dm_load_record

fully qualified dump file name to load

set,c,l,file_name

c:\temp\users_groups_acls_regtbls.dmp

save the object – this starts the load

save,c,l

check for load errors

getmessage,c

You have now completely migrated all of the users, groups, ACLs and

registered table objects from the source repository to the target
repository—and it was pretty easy. There are only two small

disadvantages to this approach and depending upon your migration
scenario, they might not even apply.

1. You have no opportunity to review or modify the users, groups, ACLs or

registered tables that are being migrated except through the Documentum

Administrator before the Dump operation is initiated. If a problem occurs

with the Dump or the Load operation, you have no visibility into the dump

file to troubleshoot the problem. You also have no opportunity to do any

transformations or editing of the objects being migrated.

2. The registered table objects (dm_registered) were migrated, but the

underlying tables they represent were not. You still need to figure out

how to migrate the content of those tables to the target system.

Depending upon your database vendor, you probably have tools to

export/dump/archive these tables, move them to the target system, and

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

6

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

import/load/restore them. In our situation, this problem was exaggerated

because we were dealing with databases from two different vendors.

DFC and API Scripts
This approach to migrating users, groups, ACLs and registered tables requires
writing a little DFC code that in turn writes some API scripts to facilitate the
migration. This approach is infinitely more fun than the Dump and Load

approach, but depending upon your situation, ―fun‖ might not be what you’re
after. Here is the basic premise of this approach:

 Create a simple Java application that logs in and establishes a session to

the source repository.

 Run some queries to gather all the users, groups, ACLs and registered

table objects that you are interested in migrating. One advantage to this

approach is that you can make the queries as selective as necessary.

 As you iterate through each collection returned by the queries, extract the

necessary metadata to recreate the objects and write API commands to a

text file to facilitate their recreation. Another advantage to this approach

is the opportunity to tweak any of the metadata either before you write it

to the output file or editing the metadata while reviewing the text file.

 Process the rows of each registered table and write a DQL script to

recreate the registered table.

 Transport these scripts to the target environment and execute them using

IAPI32 and IDQL32.

One very important lesson we learned from implementing this approach is that
users, groups and ACLs can be a tangled mess. Frequently you encounter a

chicken and egg sort of paradox: you can’t create an ACL because a group
doesn’t exist, but you can’t create the group because the user doesn’t exist and

you can’t create the user because their default ACL doesn’t exist.

We discovered that the solution to this problem is to create these objects in

several iterative passes. The order we determined to work best is this:

1. Groups – create the basic group objects with proper names but no

members.

2. Users – create user objects with no default groups or ACLs.

3. ACLs – create basic ACL objects with groups and/or users.

4. Patch Groups – now that the users exist, add them to the groups

5. Patch Users – now that all the ACLs and groups exist, update the user

objects.

Following are representative examples of the code to create the five API scripts
listed above.

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

7

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Groups

This code simply queries for all of the dm_group objects and writes two output

files. You can augment this query to target or eliminate certain users if

necessary. The first output file creates the API script to create the groups with
minimal metadata and no membership (script 1). You could obviously collect

more metadata if you need additional metadata about each group. The second
API file writes the ―patch‖ (script 4) that will be used to add membership to each
group once the user objects have been migrated.

private void exportGroups(IDfSession s) throws DfException {

 outputFile1 = openOutputFile("1_groups.api");

 outputFile2 = openOutputFile("4_groups.api");

 q.setDQL("select r_object_id from dm_group");

 col = q.execute(s, DfQuery.DF_READ_QUERY);

 while (col.next()) {

 IDfGroup group = (IDfGroup) s.getObject(new DfId(

 col.getString("r_object_id")));

 // Create group objects

 outputFile1.println("create,c,dm_group");

 outputFile1.println("set,c,l,group_name");

 outputFile1.println(group.getGroupName());

 if (group.getDescription().length() > 0) {

 outputFile1.println("set,c,l,description");

 outputFile1.println(group.getDescription());

 }

 // Repeat this pattern for additional attributes

 outputFile1.println("save,c,l");

 // Write the file that will later patch the membership

 outputFile2.println("retrieve,c,dm_group where group_name = '"

 + group.getGroupName()+ "'");

 outputFile2.println("set,c,l,owner_name");

 outputFile2.println(group.getOwnerName());

 // Add member groups

 if (group.getGroupsNamesCount() > 0) {

 int cnt = group.getGroupsNamesCount();

 for (int i=0; i<cnt; i++) {

 outputFile2.println("append,c,l,groups_names");

 outputFile2.println(group.getGroupsNames(i));

 }

 }

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

8

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 // Add member users

 if (group.getAllUsersNamesCount() > 0) {

 int cnt = group.getAllUsersNamesCount();

 for (int i=0; i<cnt; i++) {

 outputFile2.println("append,c,l,users_names");

 outputFile2.println(group.getUsersNames(i));

 }

 }

 outputFile2.println("save,c,l");

 }

 // Close everything

 col.close();

 closeOutputFile(outputFile1);

 closeOutputFile(outputFile2);

}

The result of this pseudo code will be two API files similar to these.

1_groups.api ###

create,c,dm_group

set,c,l,group_name

mac support

set,c,l,description

support for mac users

save,c,l

create,c,dm_group

set,c,l,group_name

pc support

set,c,l,description

support for pc users

save,c,l

4_groups.api ###

retrieve,c,dm_group where group_name = 'mac support'

append,c,l,groups_names

admingroup

append,c,l,users_names

Steve Jobs

append,c,l,users_names

Steve Wozniak

save,c,l

retrieve,c,dm_group where group_name = 'pc support'

append,c,l,groups_names

admingroup

append,c,l,users_names

Bill Gates

append,c,l,users_names

Paul Allen

save,c,l

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

9

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Users

Like the Group code, the logic to migrate the Users queries for all users

(dm_user) in the repository. You could restrict this query to only process active

users or some other subset if necessary. Also like the Group code, this code
writes two output files. The first output file (script 2) creates the basic user

objects with the some basic metadata. The second file (script 5) ―patches‖ the
user objects with their default ACLs after the ACLs are migrated.

private void exportUsers(IDfSession s) throws DfException {

 outputFile1 = openOutputFile("2_users.api");

 outputFile2 = openOutputFile("5_users.api");

 q.setDQL("select r_object_id from dm_user where r_is_group =

 FALSE");

 col = q.execute(s, DfQuery.DF_READ_QUERY);

 while (col.next()) {

 IDfUser user = (IDfUser) s.getObject(new DfId

 (col.getString("r_object_id")));

 // Create user objects

 outputFile1.println("create,c,dm_user");

 outputFile1.println("set,c,l,user_name");

 outputFile1.println(user.getUserName());

 outputFile1.println("set,c,l,client_capability");

 outputFile1.println(user.getClientCapability());

 outputFile1.println("set,c,l,default_folder");

 outputFile1.println(user.getDefaultFolder());

 if (user.getUserGroupName().length() > 0) {

 outputFile1.println("set,c,l,user_group_name");

 outputFile1.println(user.getUserGroupName());

 }

 if (user.getUserOSName().length() > 0) {

 outputFile1.println("set,c,l,user_os_name");

 outputFile1.println(user.getUserOSName());

 }

 outputFile1.println("set,c,l,user_privileges");

 outputFile1.println(user.getUserPrivileges());

 outputFile1.println("set,c,l,user_state");

 outputFile1.println(user.getUserState());

 // Repeat pattern for additional attributes

 outputFile1.println("save,c,l");

 // Write the file that will later patch the users

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

10

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 outputFile2.println("retrieve,c,dm_user where user_name =

 '" + user.getUserName() + "'");

 outputFile2.println("set,c,l,acl_name");

 outputFile2.println(user.getACLName());

 outputFile2.println("set,c,l,acl_domain");

 outputFile2.println(user.getACLDomain());

 outputFile2.println("save,c,l");

 }

 // Close everything

 col.close();

 closeOutputFile(outputFile1);

 closeOutputFile(outputFile2);

}

The result of this pseudo code will be two API files similar to these.

2_users.api ###

create,c,dm_user

set,c,l,user_name

bgates

set,c,l,client_capability

8

set,c,l,default_folder

/PC

set,c,l,user_group_name

pc support

set,c,l,user_os_name

bgates

set,c,l,user_privileges

16

set,c,l,user_state

0

save,c,l

create,c,dm_user

set,c,l,user_name

sjobs

set,c,l,client_capability

8

set,c,l,default_folder

/MAC

set,c,l,user_group_name

mac support

set,c,l,user_os_name

sjobs

set,c,l,user_privileges

16

set,c,l,user_state

0

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

11

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

save,c,l

5_users.api ###

retrieve,c,dm_user where user_name = 'Bill Gates'

set,c,l,acl_name

pc projects acl

set,c,l,acl_domain

dmadmin

save,c,l

retrieve,c,dm_user where user_name = 'Steve Jobs'

set,c,l,acl_name

mac projects acl

set,c,l,acl_domain

dmadmin

save,c,l

ACLS

The ACL code migrates all of the custom ACLs in the repository. This is

accomplished by appending the where object_name not like 'dm_%' clause to

the end of the DQL statement. Again, this DQL can be as restrictive or inclusive

as needed—this is part of the advantage to this approach. The one important
thing to remember about creating ACLs is that access must be granted; you can’t
set the attributes that contain the user and group access rights.

private void exportACLs(IDfSession s) throws DfException {

 outputFile = openOutputFile("3_acls.api");

 q.setDQL("select r_object_id from dm_acl where object_name not like

 'dm_%'");

 col = q.execute(s, DfQuery.DF_READ_QUERY);

 while (col.next()) {

 IDfACL acl = (IDfACL) s.getObject(new DfId

 (col.getString("r_object_id")));

 // Create ACL object

 outputFile.println("create,c,dm_acl");

 outputFile.println("set,c,l,object_name");

 outputFile.println(acl.getObjectName());

 if (acl.getDescription().length() > 0) {

 outputFile.println("set,c,l,description");

 outputFile.println(acl.getDescription());

 }

 outputFile.println("set,c,l,acl_class");

 outputFile.println(acl.getACLClass());

 outputFile.println("set,c,l,owner_name");

 outputFile.println(acl.getDomain());

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

12

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 // Remember access has to be GRANTED

 if (acl.getAccessorCount() > 0) {

 for (int i=0; i< acl.getAccessorCount(); i++) {

 outputFile.println("grant,c,l,'" +

 acl.getAccessorName(i) + "'," +

 acl.getAccessorPermit(i));

 }

 }

 // Remember to handle extended permits too

 outputFile.println("save,c,l");

 }

 // Close everything

 col.close();

 closeOutputFile(outputFile);

}

The result of this pseudo code will be an API file similar to this.

3_acls.api ###

create,c,dm_acl

set,c,l,object_name

pc_support

set,c,l,description

PC Support ACL

set,c,l,acl_class

0

set,c,l,owner_name

dmadmin

grant,c,l,'dm_world',2

grant,c,l,'dm_owner',7

grant,c,l,'admingroup',7

grant,c,l,'pc support',7

save,c,l

create,c,dm_acl

set,c,l,object_name

mac_support

set,c,l,description

MAC Support ACL

set,c,l,acl_class

0

set,c,l,owner_name

dmadmin

grant,c,l,'dm_world',2

grant,c,l,'dm_owner',7

grant,c,l,'admingroup',7

grant,c,l,'mac support',7

save,c,l

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

13

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

Running these API scripts in their numbered order on the target repository will

recreate the users, groups and ACLs that are in your source repository.

 1_groups.api

 2_users.api

 3_acls.api

 4_groups.api

 5_users.api

Registered Tables

Finally, let’s look at migrating registered tables. This approach works in two

steps. In the first step, each table is examined and converted to DQL. In the

second step, each registered table object (dm_registered) is captured for

migration.

The createRegTableScript() method described below interrogates each registered
table and writes DQL to recreate it. First it writes the create table statement that
specifies each columns’ name, data type and length. Then it steps through each

row and writes insert statements for each value it finds. Notice that each

statement the script produces is prefaced with ―execute exec_sql with query

=‖. This allows the script to be run using the IDQL32 command line tool and

eliminates the need to create the tables using a database-specific utility.

private void createRegTableScript(IDfSession s) throws DfException {

 String[] dataTypes = null;

 outputFile = openOutputFile("regtab_script.dql");

 // Determine database type

 if (s.getDBMSName().equalsIgnoreCase("oracle")) {

 dataTypes = ORCLdataTypes;

 } else {

 dataTypes = SQLdataTypes;

 }

 // Get custom registered tables

 q.setDQL("select r_object_id from dm_registered where object_name

 not like 'dm%' and 'adm_turbo%' and object_name not like '%_s'

 and object_name not like '%_r'");

 col = q.execute(s, DfQuery.DF_READ_QUERY);

 while (col.next()) {

 StringBuilder colSpecs = new StringBuilder();

 StringBuilder colNames = new StringBuilder();

 IDfSysObject regtab = (IDfSysObject) m_session.getObject(new

 DfId(col.getString("r_object_id")));

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

14

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 // Write table drop

 outputFile.println("execute exec_sql with query = 'drop table

 dbo." + regtab.getString("object_name") + "'");

 outputFile.println("go");

 // Query each table

 q2.setDQL("select * from dbo." + regtab.getString

 ("object_name"));

 col2 = q2.execute(s,DfQuery.DF_READ_QUERY);

 // Write column info

 IDfTypedObject colRow = col2;

 // Build strings with column specs (for create) and column

 // names (for insert)

 for (int i=0; i<colRow.getAttrCount(); i++) {

 if (colNames.length() > 0) {

 colNames.append(",");

 }

 // Create col names

 colNames.append(colRow.getAttr(i).getName());

 if (colSpecs.length() > 0) {

 colSpecs.append(",");

 }

 // Create the insert info

 colSpecs.append(colRow.getAttr(i).getName() + " " +

 dataTypes[colRow.getAttr(i).getDataType()]);

 // If it’s a string, get size

 if (colRow.getAttr(i).getDataType() == 2) {

 colSpecs.append("(" + colRow.getAttr(i).getLength() +

 ")");

 }

 }

 // Create table

 outputFile.println("execute exec_sql with query = 'create table

 dbo." + regtab.getString("object_name") + " (" +

 colSpecs.toString() + ")'");

 outputFile.println("go");

 // Create insert statements

 while (col2.next()) {

 outputFile.print("execute exec_sql with query = 'insert

 into dbo." + regtab.getString("object_name") + "(" +

 colNames.toString() + ") values (");

 StringBuilder values = new StringBuilder();

 colRow = col2;

 // Get value in each row

 for (int i=0; i<colRow.getAttrCount(); i++) {

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

15

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 if (values.length() > 0) {

 values.append(",");

 }

 // Get values and escape single ticks

 String row = colRow.getString(colRow.getAttr(i).

 getName());

 row.replaceAll("'","\'");

 values.append("''" + row + "''");

 }

 outputFile.println(values.toString() + ")'");

 outputFile.println("go");

 }

 // Close the inner collection

 col2.close();

 outputFile.println();

 }

 // Close outer collection

 col.close();

 closeOutputFile(outputFile);

}

The result of this pseudo code will be a DQL file similar to this.

regtab_script.dql ###

execute exec_sql with query = 'drop table dm_dbo.states'

go

execute exec_sql with query = 'create table dm_dbo.states (name

 STRING(32), abbr STRING(2))'

go

execute exec_sql with query = 'insert into dm_dbo.states (name,abbr)

 values (''Virginia'', ''VA'')'

go

execute exec_sql with query = 'insert into dm_dbo.states (name,abbr)

 values (''Maryland'', ''MD'')'

execute exec_sql with query = 'insert into dm_dbo.states (name,abbr)

 values (''District of Columbia'', ''DC'')'

The second step of the process is to create the registered table (dm_registered)

objects for each of the tables captured in step 1. This is a straightforward
process and capitalizes on the fact that Documentum does not really need the

name, size and length of each column in the underlying table; it will allow you to
simply get away with using a dummy column name.

private void exportRegTables(IDfSession s) throws DfException {

 outputFile = openOutputFile("dmregistered_script.dql");

 // create RDBMS tables first

 createRegTableScripts();

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

16

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

 q.setDQL("select * from dm_registered where object_name not like

 'dm_%'");

 col = q.execute(s, DfQuery.DF_READ_QUERY);

 while (col.next()) {

 // get object

 IDfSysObject regtab = (IDfSysObject) s.getObject(new

 DfId(col.getString("r_object_id")));

 outputFile.println("register table dm_dbo." +

 regtab.getString("table_name") + " (dummy string(10))");

 outputFile.println("go");

 }

 // Close everything

 col.close();

 closeOutputFile(outputFile);

}

The result of this pseudo code will be a DQL file similar to this.

dm_registered_script.dql ###

register table dm_dbo.states (dummy string(10))

go

Now, take these scripts to the target system and reconstitute your registered
tables by running first the regtab_script.dql and then the dmregistered_script.dql
using the IDQL32 command line tool.

There you have it; you have completely migrated the users, groups, ACLs and

registered tables from your source repository to your target repository. This
approach has some obvious advantages over the Dump and Load method:

1. You can easily control the objects that are migrated by modifying the DQL

statements used. This gives you infinite flexibility to control batch sizes,

or create migration scripts based upon some other attribute of the user.

2. You can use conditional logic while processing the collection that results

from the query. You can transform metadata, map metadata to new or

different attributes, consolidate user groups, etc. This injects a degree of

―ETL-ness‖ into your user migration.

3. You can examine the objects that are being migrated. Once the API

scripts are written, you can review the objects that are being migrated and

make adjustments if necessary. This provides a degree of QA that the

Dump and Load method does not.

4. Registered tables—both objects and content—can also be migrated using

only DQL; there is no need for any special database tools. In fact, this

entire approach is database and repository version neutral. You run these

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

17

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

export scripts on a Windows/SQL Server/5.3 system and import the users,

groups, ACLs and registered tables into a Unix/Oracle/D6 target system.

One final advantage: if you are clever, you can have the Java code write an
―undo‖ script for you also in case you need to remove the objects from the target
repository.

Conclusion
In this article we have given you two quick approaches for migrating existing

users, groups, ACLs and registered tables from a source repository to a target
repository. The first method utilized Dump and Load and is really simple to
implement. The simplicity comes at the cost of flexibility. If you are migrating a

simple repository and don’t necessarily need to remap attributes or do anything
else to the objects as they migrate, this is a good approach. This approach

sticks to proven industry tools (Documentum’s Dump and Load, and your
database vendor’s export/import tools) and requires no real programming.

The second approach used a Java/DFC program to extract user, group, ACL and
registered table objects from the repository and persisted them as a

Documentum API script file. This approach we equated to using Star Trek’s
transporter: you extracted objects, persisted them on a medium, and
reconstituted them in a new place. This approach required an investment in

writing some code, but gave you maximum control and flexibility in your
migration. While extracting objects from the source repository, you could do

anything imaginable to them before writing them to the API file. This approach
will even allowed you to extract registered table content. The key to this

approach was the specific order in which objects are reconstituted and patched in
the target repository.

There are many approaches and philosophies for migrating Documentum
content; these are but two. We’re certain you have encountered or thought

about other objects that need migration that these approaches don’t address
(e.g., audit trails, version stacks). Those situations, requirements and
experiences can be the subject of your article. We look forward to reading it!

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

18

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

About Flatirons Solutions
Flatirons Solutions, an Inc. 500 company, provides consulting, systems

integration, and systems & software engineering services to Fortune 500
companies and government agencies. A leading content management solutions

provider specializing in XML-based publishing and digital asset management,
Flatirons has provided enterprise-wide solutions in industries such as high
technology, aerospace, transportation, publishing, manufacturing, financial

services, insurance, media and entertainment, retail, and healthcare. Flatirons
Solutions also actively participates in both DITA and DocBook XML technical

committees. Established in 2001, Flatirons Solutions is a privately-held company
headquartered in Boulder, Colorado, with offices in Washington D.C. and Ft
Worth, TX. For more information visit Flatirons Solutions on the web at

http://www.FlatironsSolutions.com.

About the Authors
M. Scott Roth is the content management solutions architect for Government
Solutions at Flatirons Solutions Corp. He is also the author of the book, A
Beginners Guide to Developing Documentum Desktop Applications, and the open

source Documentum command line client, DOCS.

<SDG><

Brian Yasaki is a content management consultant for Government Solutions at
Flatirons Solutions Corp.

http://www.flatironssolutions.com/
http://www.amazon.com/Beginners-Developing-Documentum%C2%AE-Desktop-Applications/dp/0595339689/ref=pd_bbs_sr_3?ie=UTF8&s=books&qid=1227708886&sr=8-3
http://www.amazon.com/Beginners-Developing-Documentum%C2%AE-Desktop-Applications/dp/0595339689/ref=pd_bbs_sr_3?ie=UTF8&s=books&qid=1227708886&sr=8-3
http://www.amazon.com/Beginners-Developing-Documentum%C2%AE-Desktop-Applications/dp/0595339689/ref=pd_bbs_sr_3?ie=UTF8&s=books&qid=1227708886&sr=8-3
http://www.sourceforge.net/projects/dctmcmd

Two Approaches for Migrating Existing Documentum

Users, Groups, ACLs and Registered Tables

19

COPYRIGHT © 2008 FLATIRONS SOLUTIONS CORPORATION

4747 Table Mesa Drive, Suite 200
Boulder, Colorado 80305

(303) 544-0514
info@FlatironsSolutions.com

www.FlatironsSolutions.com

	Introduction
	Dump and Load
	Dump
	Load

	DFC and API Scripts
	Groups
	Users
	ACLS
	Registered Tables

	Conclusion
	About Flatirons Solutions
	About the Authors

